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Abstract

During the last few years several surgical training simulators have been proposed.
One of the main advantages of these simulators is the ability to provide riskless
training on a wide range of different cases in a compressed period of time. Therefore
the generation of variable surgical scenes is a crucial component of a simulator.
This paper compares three different approaches for the generation of pathologies
specifically suited for surgical training simulators. The generated models can be
embedded in the healthy organ model to challenge the trainee with a new case in
every training.
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1 Introduction

Endoscopic interventions require specific skills, which nowadays are acquired
during actual surgery in assistance of experienced physicians. Virtual reality
based surgical simulators represent an appealing alternative for future training
and education. The enormous computational requirements of these simulators
have prevented an earlier development of such systems. More recently, vari-
ous simulators for different endoscopic procedures like laparoscopy and hys-
teroscopy have been proposed [2,3]. There is consensus that a surgical training
simulator can not only offer a risk-free learning environment, but also allow
for training on a much wider range of clinical cases. Nevertheless, previously
proposed systems use a single organ model, thus providing the same envi-
ronment in all trainings. The generation of different surgical scenes has not
yet been treated as a specific issue. Our current research aims at a high fi-
delity hysteroscopy simulator in which both the healthy organ anatomy and
the pathologies vary from training to training, thus challenging the trainee in
every session with a new case.
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The configuration of a surgical scene entails both the selection of a healthy
anatomical organ model, which could statistically correspond to a type of pa-
tient specified, as well as the incorporation of one or possibly more pathologies
into the organ. This paper summarizes and evaluates different strategies for
the generation of pathologies specifically suited for surgical training simula-
tors. The main requirement for any such pathology generation strategy is a
fully automatic creation of realistic shapes after definition of some parame-
ters by the physician. The input parameters have to be specified in medical
terminology and no further interaction with a physician or a simulator expert
should be needed after initialization. The generation procedure has to intro-
duce variations and provide the necessary informations for texturing, blood
perfusion and biomechanical modeling. Finally, the emerging structures have
to be incorporated into the healthy organ models.

Previously reported tumor growth models focused on other features of the
tumor gestation process, e.g. the exact cellular interactions or the stability of
the growth [1,4]. These features can be neglected in the current application.
This is the first time that the generation of pathologies suitable for surgical
simulators is analyzed on a broad basis of possible approaches, to the best of
our knowledge.

2 Pathology Generation Strategies

The three methods investigated are briefly summarized in the following sec-
tions. The pathologies modeled are leiomyomas and polyps protruding to dif-
ferent extents into the uterine cavity, therefore being visible and treatable
by hysteroscopy. Both polyps and myomas are benign tumors and a common
finding in women in their childbearing years. Their clinical relevance as well as
the different properties of these pathologies make them excellent candidates
for the evaluation of the different approaches presented.

All myomas start growing inside the myometrium and seem to be squeezed
out of the tissue as they grow. Myomas have a much stronger tendency to keep
their shape than any of the surrounding tissues, as they are composed of dense
fibrotic tissue. Thus, a myoma will be able to grow almost independently from
its surroundings by keeping a spherical shape. Polyps, in contrast, originate as
focal hyperplasias of the basalis and build elongated structures of soft tissue
mass. They are mainly composed of glands, stroma and blood vessels. Both
pathology types vary in size ranging from a couple of millimeters to several
centimeters, filling the entire uterine cavity.

Cellular Automaton A previously presented cellular automaton is able to
model the growth process of leiomyomas [5]. A cellular automaton is intrinsi-
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cally stable and offers therefore an appealing way to implement a rule-based
system. In a regular, three dimensional lattice, two different cell types (tissue,
tumor) and the cavity (empty compartments) interact in every iteration with
a local neighborhood. A minimal set of rules was specified, so that intramural
and submucosal, both sessile and pedunculated, myomas can be generated.
The rules model the generation of new tumor cells, the dissipation of the mass
surrounding the tumor and the force acting on the myoma from the tissue.
The last rule leads to the slow extrusion of the pathology from the tissue. The
growth process is initiated by inserting a tumor seed in at least one compart-
ment within the tissue. The probabilistic application of the rules introduces
the variability in the resulting structures. To incorporate the myomas in the
organ model, the latter has first to be transformed into the domain of tu-
mor growth by voxelization of the organ’s surface. After growth, the resulting
structure is transformed back into a surface model. An example of a resulting
myoma after 22 iterations using a single tumor seed can be seen in the first
image in Figure 1.

Skeleton-Based Design The simplified skeleton-based approach allows for
direct specifications of pathologies [6]. Based on a straight-line skeleton axis
and the associated width function, a revolution object with a characteristic
profile curve is defined. The profile is defined by the control points of a B-spline
curve. The dimension of input parameters is further reduced by adjusting
the control points based on some anatomical values, e.g. the dimensions of
the peduncle. The resulting surface is perturbed at different resolutions to
generate variations of the shape. The final model is merged with the surface
of the uterus. Therefore the imaginary socket of the pathology is placed at
some user selected position inside the uterine cavity. An optimal connection
between the two surfaces is found and the socket of the pathology attracted
to the uterus to create a smooth transition between the objects.

As no growth process is involved, the model cannot incorporate physiological
information. Also no differentiation of healthy and pathological tissue is possi-
ble. The second image in Figure 1 illustrates a polyp embedded in the uterine
cavity.

Particle System Finally, a particle-based growth model was developed [7].
Different types of particles are introduced (healthy tissue, pathology and sur-
face). Every particle represents a certain amount of tissue and thus requires
a corresponding amount of space. This is encoded in the particle by assign-
ing a force profile to each particle. Within a limited range of interaction and
depending on the distance between the particles they repulse or attract each
other with forces related to their profiles. The surface-particles are intercon-
nected to build a triangulated surface, which represents the endometrium and
constitutes an impermeable membrane for all other particles. The connections
are modeled by springs, allowing the membrane to stretch and deform as the
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pathology grows. The resulting forces in the surface are kept small by subdi-
viding the mesh adaptively and resetting the equilibrium length of the springs
after every iteration.

The pathology is initialized by introducing a single particle with an increased
proliferative index. This particle is located inside the healthy tissue in case of
a myoma whereas it is placed on the surface for a polyp. In every iteration the
tumor grows by dividing one tumor particle. All particles adapt to the new
situation and apply forces on the surface, which finally leads to a constrained
growth. The initial surface of the organ is used as the membrane, so that the
growth process is directly performed in the organ’s representation. The last
image in Figure 1 shows an exemplary polyp after 240 growth iterations.

3 Comparison and Evaluation

The different concepts and algorithms allow for a clear distinction of the field
of applications of these methods. Table 1 depicts the basic differences of the
presented models.

The particle-based approach is the most accurate of the models under scrutiny
in terms of biological processes imitated. The gestation of the tumor is repre-
sented by the division of particles and can be related to the proliferative rates
of different cells. The framework can easily be extended to introduce malign
tumors with competing cell populations and necrotisation. The particles are
free to move in a continuous space and no discretization limits the modeling,
as opposed to the cellular automaton. The distinction between tumor and
healthy tissue in both the cellular automaton and the particle system can be
exploited in the simulation to assign different biomechanical properties to each
tissue.

The implementation of the particle system is more demanding than the one
of the cellular automaton or the skeleton approach. As mentioned, a cellular
automaton is intrinsically stable. The skeleton based design has only a few
control points of the characteristic curve which have to be kept in certain
boundaries for reasonable results. This can easily be enforced by checking the
input values given by the user. The particle system instead can easily become
unstable, e.g. if too strong force profiles are chosen. In addition, special care
is required to prevent particles from penetrating the membrane.

The computational time required on a Linux based PC with a 2.53 GHz Pen-
tium processor scale roughly as follows: about one second for the design of a
skeleton-based pathology, around one minute to grow the cellular automaton
model and up to several hours for the particles-based growth. The skeleton
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Table 1
Main characteristics of the different methods.
Property Cellular Automaton Skeleton-Surface Particles System
Physiology basic none more advanced
Stability intrinsic input control critical
Computational time minutes seconds hours
Interaction none possible none
Integration in organ complex simple obsolete

model has constant complexity O(k). The cellular automaton has O(nm) com-
plexity, with n the number of growing steps and m the size of the volume. The
particle system’s complexity is O(nmx), with n being the number of particle
divisions, m the number of particles and x a factor between 1 and 2, as most
particles have to be tested against each other, even in an optimized implemen-
tation.

Physicians might desire more control over the generated structures. The com-
putational time required by the particle approach does not allow for any
reasonable interaction during the growth phase. Restarting the process with
modified parameters would be far too time consuming. For such situations,
the skeleton based pathology design seems to be the best choice. Mass-spring
models of this size can be modified at interactive rates, so that the resulting
pathology can directly be altered by the user.

A cellular automaton is based on a volumetric data representation while all
other models use surface representations. The integration of this model in the
healthy anatomy requires at least one transformation of the representation
and additional modifications of the surface models, as collisions cannot be
handled in a cellular automaton.

4 Conclusion and Future Research

The results obtained with the different methods have all been discussed with
experienced gynecologists. They all produce good to excellent results. Yet
the implementation of different methods for the generation of pathologies has
shown that all of them have specific advantages and disadvantages. As the
goal of current research is a high fidelity simulator and computational power
continuously increases, we strongly believe that the simulation of the growth
process based on particles leads to the most accurate results and is therefore
the most promising in the long term.

Validation of the results is an important and demanding task. The visual in-
spection convinced the experts in all cases. We expect that the final simulation
with the incorporation of biomechanical parameters and haptic feedback will
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Fig. 1. Results obtained with the different generation strategies. More
examples and animations of the growth processes can be found online at
http://www.vision.ee.ethz.ch/∼rsierra/cars2003.

give more insights on the suitability of the different approaches. So far, the
particle method can be seen as a benchmark for the other models, as it involves
the most biological knowledge.

In the future, the generation of variable anatomical models of the healthy
organs will be investigated in order to create a coherent, variable surgical
scene.
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