Nonrigid registration of diffusion
tensor images

Raimundo Sierra
Electrical Engineering, Master Thesis
rsierra@osola.com

Advisor at ETH Ziirich: Prof. Dr. Gabor Székely
Advisor at Harvard: Simon K. Warfield, Ph.D.

March 2001



B/w/

Swiss Federal Institute of Technology (ETHZ)
Computer Vision Laboratory

Medical Image Analysis and Visualization Group
Gloriastrasse 35

ETH-Zentrum

CH - 8092 Ziirich, Switzerland
http://www.vision.ee.ethz.ch/

Brigham and Women’s Hospital
Surgical Planning Laboratory

75 Francis Street

Boston, Massachussetts, USA
http://splweb.bwh.harvard.edu:8000/

Frontpage image:
Diffusion tensors around the anterior horn of the
lateral ventricel in an adult human brain



Abstract

This thesis discusses diffusion tensor imaging as a Magnetic Resonance Imaging modality. Dif-
fusion tensor imaging allows the observation of molecular diffusion in tissues in vivo and therefore
the molecular organization in tissues. The main interest in this case is the observation of myeli-
nated fibertracts in the brain of premature born babies. Myelination of fibers in the white matter
of the brain is a fast process in the last few weeks preterm and the observation of this process gives
an insight in the development of the human brain and allows a better and earlier detection of small
injuries or abnormalities.

The goal is to match diffusion tensor images of neonates, and to build an enabling technology
to ultimately generate a statistical atlas of the development of the brain in babies between 28 and
40 weeks postconceptional age. While it was not possible to build the statistical atlas in the time
given, the complete process from preprocessing of the data to nonrigid alignment of diffusion tensor
images has been implemented and successfully applied on some exemplary cases.

To better understand the characteristics of diffusion tensors and to be able to prove the correct-
ness of the algorithms, a new way of displaying diffusion tensors was implemented. This method
visualizes the diffusion tensor as ellipsoids in a voxel raster.

The following report outlines the medical background, the imaging acquisition process and the
data processing path. The reader should be able to understand diffusion tensor imaging and the
matching principles used and expand the provided software to fit specific and further needs.

To successfully build a meaningful atlas of the development of the brain in neonates, a num-
ber of three-dimensional cases needs to be processed and a statistical analysis of the results has
to be performed. Therefore a correct incorporation of the different voxel dimensions has to be
implemented. As the data quality of the diffusion tensor images in baby scans is very low, the
incorporation and combination with other scanning modalities should be considered.
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Chapter 1

Introduction

The development of the human brain is probably one of the most interesting topics in the obser-
vation of neonates and premature infants. Definition of anatomical and temporal characteristics
of development of critical brain structures in the living premature infant is crucial for an insight
into the time of greatest vulnerability in such structures.

Diffusion tensor magnetic resonance imaging is the only noninvasive means available today
that approaches the molecular diffusion process in vivo and therefore allows the observation of the
microstructural development in the human newborn cerebral white matter.

Different studies have been performed to analyze this development quantitatively [2] [6]. Other
studies use this imaging modality for an early detection of small injuries [4] [5].

The inter-subject comparison of this microstructural development will make it possible to build
a statistical atlas for the normally developing brain. Comparing this atlas to single subjects could
allow the early detection of injuries or abnormalities. A first step to build such an atlas is the rigid
and nonrigid registration of two different subjects to remove natural inter-subject differences. This
work presents a method on how to match tensor images, which represent the molecular diffusion
process, of different subjects.

e Chapter 2 gives an insight on the medical application for which this work was done.

e Chapter 3 explains how diffusion tensor images are acquired with magnetic resonance tech-
nologies and the characteristics of human brain in this image modality.

e Chapter 4 discusses some general characteristics of the tensor data structure, different mea-
surements that can be applied, and finally some ways of visualizing tensor data.

e Chapter 5 to 7 present the data processing path from the scanner to the nonrigid matching
of two different data sets. This path is illustrated in Figure 1.1. Chapter 5 describes the
preprocessing which entails the conversion of the scanner output into tensor data, i.e. solving
the equations presented in Chapter 3 as well as the generation of the corresponding tensor
data structure. In Chapter 6 the process of rigidly aligning two images (and specifically
tensor data) is described. Chapter 7 finally presents the nonrigid registration of two data
sets and all the methods involved.

e Chapter 8 is a short presentation of some ways of segmenting diffusion tensor data. It
should be mentioned that this is only a description of the segmentations that can easily
be performed with the current implementation, but there is no further investigation on the
quality and meaning of the segmentation.

e Chapter 9 gives an overview of the program structure, the interaction and function of the
different classes and the data representation. Appendix A includes a description of the most
important functions.



CHAPTER 1. INTRODUCTION

Input
Subject
Hhlee Scanner
1.001 .. | ~C
Rl LSDI_recon
name-S01L1x.pic ..
name-SxxL3z.pic; convert
Data information
file1.xml

mask
file1.xml ..
file2.xml rigidreg
Parameters
file1.xml —
file2.xml nonrigidreg
Parameters

further processing

|

Output files

1.001 .. L.xxx

name-S01L1x.pic ..
name-SxxL3z.pic

file.xml file.ten file.eig file.bg

file.mask.0xx
file.masked.xml .ten .eig .bg

file1.final-param-file
file1.aligned.xml .ten _eig .bg

file1.matched.xml .ten .eig .bg
file1.matched.dx .dy .dz

Figure 1.1: Data processing path

e Chapter 10 presents some conclusions and discusses different extensions and improvements

that should be considered.

Through this report D will denote a tensor which is a symmetric 3 x 3 matrix. Positions in an
image or volume (2 of any type are indexed with i, j, k for the x, y and z dimensions respectively,
so that D(i, j, k) refers to the tensor at position (7,7, k). The dimensions of the volume are X,Y
and Z, and the voxel dimensions are dx, dy and dz. When comparing two data sets the index §
identifies the reference or stationary image, which will not be displaced. The index M refers the
moving data set which will be displaced according to a displacement field U = (v,v,w)T to better

match the stationary data set.

A tensorfield denotes a field or volume of tensors which represents the data set. When decom-
posing the tensor into an eigenvalue, -vector, i.e. an eigensystem, the term eigenfield will be used

to describe the data set.



Chapter 2

Medical Background

The registration of different subjects to compare the anatomical variability and statistically analyze
this variability is an established process in different medical applications [30].

The basic approach to generating an atlas is to obtain images from a large number of subjects in
a mathematical framework that produces a database that is probabilistic. Such an atlas allows the
user to obtain relative information that takes into account the variance in structure and function
in human populations. Once established such an atlas can interact with new data sets derived from
individual subjects and patients [31].

When comparing a new subject with the atlas, abnormalities in this subject are easier to
detect. Also the structures in the new subject can be labeled according to the atlas, to which
it was registered. Building a temporal atlas allows observation of the mean development in a
population.

A quantitative analysis of the brain development in newborns has been done [6]. In this study
the total brain volume and total volumes of the cerebral gray matter, unmyelinated white matter,
myelinated white matter, and cerebrospinal fluid in premature and mature newborns of postcon-
ceptional ages of 29 to 41 weeks have been quantified. The results show that the total brain tissue
volume increases linearly at a rate of 22cm?® per week. Total gray matter shows a linear increase
in relative intracranial volume of approximately 1.4% or 15cm? in absolute volume per week. The
increase in total gray matter is mainly due to a four-fold increase in cortical gray matter.

Unmyelinated white matter is the most prominent brain tissue class in the preterm infant below
36 weeks. Although minimal myelinated white matter is present in the preterm infant at 29 weeks,
between 35 and 41 weeks an abrupt five-fold increase in absolute volume of myelinated white
matter is documented. The extracerebral and intraventricular cerebrospinal fluid volume changes
minimally during this observation period.

Subsequent neurological disability in infants born prematurely and in term infants who ex-
perience perinatal hypoxic-ischemic injury is common and serious [7]. In part the tendency for
such injuries may relate to a particular vulnerability of actively developing cerebral gray matter
and white matter in the last trimester of human gestation. The occurrence of these processes at
this maturational time period may render the brain subjected to ischemia or related insults more
vulnerable not only to injury but also to subsequent impairment of gray matter and white matter
development. The description of the anatomical and temporal characteristics of these developmen-
tal processes in the living infant is of great importance in understanding such maturation-dependent
vulnerabilities. Quantitative volumetric measurements of cerebral gray and white matter develop-
ment, including particular myelination, in the living premature and term infant are necessary to
describe these anatomical and temporal characteristics.

Another study [2] shows how the water diffusion in certain regions changes over the same period
of time (30 to 40 weeks postconceptional age). The results show that the mean apparent diffusion
coefficient at 28 weeks is high (1.8um?/ms) and decreases towards term (1.2um?/ms). Relative
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anisotropy is higher the closer birth is to term with greater absolute values in the internal capsule
than in the central white matter. Preterm infants at term show higher mean diffusion coefficient
in the central white matter (1.4 + 0.24 versus 1.15 & 0.09um?/ms) and lower relative anisotropy
in both areas compared to fullterm infants (white matter: 10.9 & 0.6 versus 22.9 & 3.0 %; internal
capsule 24.0 + 4.44% versus 33.1 + 0.6%). Nonmyelinated fibers in the corpus callosum are visible
by diffusion tensor MRI as early as 28 weeks. Fullterm and preterm infants at term show marked
differences in white matter fiber organization. The data indicate that quantitative assessment
of water diffusion by diffusion tensor Magnetic Resonance Imaging (MRI) provides insight into
microstructural development in cerebral white matter in living infants.

The study shows that there are architectural differences between the preterm infants studied at
term and the infants born at term. Fiber development and orientation, particularly in the white
matter but also in the internal capsule are more evident in the infants born at term. The central
white matter in preterm infants at term exhibits less directionality of the diffusion, thinner fiber
bundles, and less organized fibers compared to the infants born at term.

A third study [5] shows that it is possible to identify areas of abnormalities with Diffusion
Weighted Imaging (DWI) at a time where neither cranial ultrasonography nor conventional MRI
detected any definite abnormality. Here the early detection of the diffuse component of the Periven-
tricular Leukomalacia (PVL) with Diffusion Weighted Image is shown.

The findings of the studies presented demonstrate the fields of interest when observing the first
possible observation periods of brain development.

Given a diffusion tensor image of a premature born baby (and therefore the stage of myelination
of the brain white matter), possible questions when comparing a new subject to an atlas can be:

e What postconceptional age does this subject have?
e Is the development in every structure comparable to the mean development?
e Are there any lesions in the developed structures?

e Are all the expected structures present?



Chapter 3
Image Acquisition

This chapter assumes basic knowledge of magnetic resonance imaging (MRI), i.e. how nuclear
magnetic resonance is used to obtain information from the tissue under inspection. Excellent
introductions into the principles of MRI are available [8], [9].

The basic idea of diffusion tensor imaging is the same as for Phase Contrast Angiographic MRI.
The following sections are mainly a summary of different articles [22].

3.1 Molecular Diffusion and Nuclear Magnetic Resonance

Diffusive transport is observed in steady-state, non-equilibrium systems, such as in cells. A con-
centration difference is established between two compartments (cells) and a macroscopic diffusive
flux can be observed between them. Fick’s law describes how the molecular flux density J depends
on the molecular concentration gradient VC'

J=-DVC (3.1)
which leads together with the equation of conservation of mass
ocC
= —_ 3.2
5 — VI (32)
to the diffusion equation:
ocC

To be able to determine the diffusivity in vivo the diffusion process itself has to be monitored,
i.e., the random motions of an ensemble of particles, rather than solving the equation for some
initial and boundary conditions. Einstein [10] showed that the diffusion coefficient measured in the
non-equilibrium concentration cell experiments is the same quantity that appears in the variance of
the conditional probability distribution P(r|rg,t), the probability of finding a molecule at a position
r at a time ¢ which was originally at position ry. For free diffusion this conditional probability
distribution obeys the same diffusion equation as the particle concentration given. The expectancy
is then

((r —ro)(r —rg)) = 6Dt (3.4)

In the case of molecular displacements in tissues, in which diffusion is an anisotropic pro-
cess with different molecular mobility in x, y and z directions, the diffusion constant D has to
be replaced by a diffusion tensor. Equation 3.4 shows that the diffusivity can be inferred directly
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Figure 3.1: Bipolar pulsed gradient experiment (adapted from [22] and [9])

by measuring the second moment of the conditional probability distribution of the diffusing species.

The basic principles of diffusion imaging can be understood from a simple bipolar pulsed gra-
dient experiment (see Figure 3.1). The purpose of these gradient pulses is to magnetically label
spins carried by molecules. Here G denotes the gradient strength, § as the gradient duration and
A as the time interval between the pulses. The first gradient pulse induces a phase shift ¢, of the
spin transverse magnetization, which depends on the spin position. If the gradient is along z, then:

5
¢ = 7/ Gzidt = vGoéz (3.5)
0

z1 is the spin position supposed to be constant during the short duration § of the gradient
pulse. « is the gyromagnetic ratio, which is a nuclear specific factor. Its value is 42 for hydrogen
'H protons. After the 180° radio frequency (RF) pulse, ¢; is transformed into —¢;. Similarly, the
second pulse after a delay § will produce a phase shift ¢:

A+6
b2 = ”r/ Gzodt = Gz (3.6)
A
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where 25 is the spin position during the second pulse. The resulting net dephasing &(¢) is:

6(¢) = g2 — 1 = vGo(21 — 22) (3.7)

It can be seen that for static spins, i.e. not moving molecules z; = z2, the bipolar gradient
pair produces no net dephasing. For moving spins there is a net dephasing that will depend on the
spin history during the time interval A between the pulses, and which will affect the transverse
magnetization. The position of the two gradient pulses in each half of the spin-echo sequence does
not matter; it is the time elapsed between them that affects the net phase. In Nuclear Magnetic
Resonance (NMR) the total magnetization is measured, the vector sum of the magnetic moments
M of the individual nuclei, which may have different motion histories:

N
% = Z i9(¢3) (3.8)
Jj=1

where M) is equilibrium magnetization in the direction of the static applied magnetic field Bg.
This sum can be evaluated once the net phase distribution is known. Assuming free diffusion in a
homogeneous domain, the probability of finding a spin at position z; is a constant. If P(zs, 21, A)dzs
is the conditional probability of finding a spin initially at z; between positions zo and zo 4+ dzo after
a time interval A, the amplitude attenuation is:

M o0 oo .
— = / / e”G‘S(ZI_ZZ)P(zz, 21, A)dz1dzo (3.9)
Mo —o0 J—o0
For free diffusion in one dimension, the conditional probability is given by:
1 —(z1-29)%
P(z9,21,A) = ——=e~ DA 3.10
(22,21,4) VarDA (3.10)
where D is the diffusion coefficient. Combining equations 3.9 and 3.10 leads to:
M e—(1G8)’DA (3.11)

Mo

This last equation relates the measured signal attenuation to the diffusivity, and is the basis
for diffusion measurement using NMR.

Taking several pulses and the fact that § may not be negligible as compared to A, into account,
Equation 3.10 has to be solved for a general pulse sequence. This leads to the following relation
for an isotropic medium in a spin-echo experiment (for a detailed derivation of these equations see
[22] p. 8, 9).

M(TE) —e D STF (t)k(t)dt (3.12)
My

where .
k(t) = 7/ G(t"dt' (3.13)

0

Introducing the gradient factor b
TE
b= k(t)k(t)dt (3.14)
0

which characterizes the sensitivity of NMR sequences to diffusion, the signal attenuation can
be represented by the simpler expression

MJ(\ZE) =e P (3.15)
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Diffusion coefficient

Tissue -10®*mm? /s
CSF 2.94 + 0.05
Gray matter 0.76 + 0.03
White matter:

Corpus callosum 0.22 + 0.22
Axial fibers 1.07 £ 0.06
Transverse fibers 0.64 £ 0.05

Table 3.1: Diffusion coefficients of water in the human brain [22]

Diffusion is a three-dimensional process. However molecular mobility may not be the same
in all directions. This anisotropy may be due to the physical arrangement of the medium or the
presence of obstacles that limit diffusion (restricted diffusion) or both. Moreover structures that
exhibit anisotropic diffusion at the molecular level can be isotropic at the microscopic level.

As mentioned earlier, in anisotropic diffusion the effective diffusion coefficient is replaced by an
effective diffusion tensor. The echo attenuation then becomes

M(TE) _ 2,53, 6,0
MO =e 1 vj=1 (316)
where b;; is a b-matrix and D;; is an effective diffusion tensor. Its diagonal terms D, D, and
D, represent correlations between molecular displacements in the same directions, whereas its off-
diagonal terms Dy, D,., D, reflect correlations between molecular displacements in orthogonal
directions.
To obtain the different diffusion coefficients at each voxel position, different echo and gradient
sequences have been proposed [23].

3.2 Diffusion in the Normal Brain - Anisotropic Diffusion
in White Matter

The diffusion coefficient of water in tissues was found to be 2-10 times less than that of pure water
[24], [25]. This is understandable, given that water molecules are obliged to move tortuously around
obstructions presented by fibers, intracellular organelles or macromolecules. In addition, there is
a continual exchange between free water molecules and water molecules which spend some of their
time associated with the much more slowly moving macromolecules. Diffusion is thus more likely
to be ”hindered” by random obstacles than strictly ”restricted” in close spaces by walls. Table 3.1
shows some diffusion coeflicients of water in the human brain. The diffusion in the cerebrospinal
fluid (CSF) is similar to that of pure water at the same temperature (2.5 * 10~2 mm? /s @ 37.5° C)

As can be seen from Table 3.1, diffusion in white matter is extremely variable. The value of
the diffusion coefficient directly depends on the relative orientation of the fibers and the magnetic
field gradients, which is known as ”anisotropic diffusion.” Water diffusion in gray matter does not
exhibit anisotropy or restriction by impermeable walls [26], [27]. White matter on the other hand
is extremely anisotropic, the results of the measurements depending on the respective orientation
of the myelin fiber tracts and the gradient direction at each different image location. It appears
that diffusion coefficients are significantly decreased when the myelin fiber tracts are perpendicular
to the direction of the magnetic field gradient used to measure molecular displacements.

Figure 3.2 shows adjacent myelinated fibers and the diffusion of water. The diffusion coefficient
measured parallel to the myelin fiber direction D) is about three times larger (1.2 1072 mm?/s)
than the diffusion coefficient perpendicular to fibers D, (0.4 * 10~3mm? /s).
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A\ 4 A\ 4 A\ 4
—>
2 microns

Figure 3.2: Diffusion in myelinated fibers (adapted from [22])

Since MRI methods in general always obtain a macroscopic measure of a microscopic quantity
which necessarily entails intravoxel averaging, the voxel dimensions influence the measured diffusion
tensor at any particular location in the brain.

Factors which would affect the shape of the apparent diffusion tensor (i.e., the shape of the
diffusion ellipsoid) in the white matter include the density of fibers, the degree of myelination,
the average fiber diameter, and the directional similarity of the fibers in the voxel. The geometric
nature of the measured diffusion tensor within a voxel is thus a meaningful measure of fiber tract
organization.

Although the individual axons and the surrounding myelin sheaths cannot be revealed with the
limited spatial resolution of in wvivo imaging, distinct bands of white matter fibers with parallel
orientation may be distinguished from others running in different directions. Figure 3.3 shows how
two crossing fibertracts would ideally be represented by a diffusion tensor image.

Although there is no doubt that diffusion is anisotropic in white matter, controversies about the
origin of this anisotropy remain. The diffusion-time dependence of the measured diffusion coefficient
is the crucial experimental test for the presence and dimension of diffusive barriers. If diffusion is
restricted by impermeable barriers the diffusion coefficient decreases when the diffusion distance
reaches the dimension of the available volume. Water in gray and white matter diffuses without
encountering significant barriers - at least on the distance range of 8 - 10 microns, which exceeds
the dimensions of most cellular compartments [26]. Anisotropy also exists in brains of neonates
before the histological appearance of myelin [18]. This leads to the conclusion that myelination is
not essential for the diffusion anisotropy of nerves. Nevertheless myelin is widely assumed to be the
major barrier to diffusion in myelinated fiber tracts. Therefore the demonstration of anisotropic
diffusion in the brain by magnetic resonance has opened the way to explore noninvasively the
structural anatomy of the white matter in vivo [16].

In summary, diffusion measurements in vivo reflect complicated pathways of water molecules
in the tissue.
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Figure 3.3: Diffusion tensor overlying two crossing fibertracts

3.3 Baby Brain Data

The data used in this study was generated using a modified version of the Line Scan Diffusion
Imaging (LSDI) technique [28]. In this technique a bipolar gradient pulse echo is used. This
sequence has been shown in Figure 3.1. In this case b in Equation 3.15 becomes

g) (3.17)

so that the loss of signal intensity is (Stejskal Tanner formula)

b=7"G*6*(A -

In(M) = In(My) — y*G*6*(A — g)D (3.18)

The data was acquired at the Brigham and Women’s Hospital on a GE Signa 1.5 Tesla Horizon
Echospeed 5.6 system with standard 2.2 Gauss/cm field gradients. The time required for acqui-
sition of the diffusion tensor data for one slice was 1 min; no averaging was performed. Imaging
parameters were: effective TR=2.4s, TE=65ms, bp;r =750 s/mm?, bjo,, =5 s/mm?, field of view
18 cm, 6 kHz readout bandwidth, acquisition matrix 128 x 128.

Usually one coronal and one axial slice with effective voxel dimensions 5 x 0.703125 x 0.703125
mm? were acquired. Newer acquisitions (September 1998 to present) with multiple slices (between
9 and 14 slices) have an effective voxel size of 4.4 x 0.703125 x 0.703125 mm?®. Axial and coronal
multislice acquisitions locations are chosen to include the majority of the white matter. Figure 3.4
shows roughly in a sagittal view the positions from where axial and coronal, multiple slice diffusion
weighted scans were taken. The factor of in-plane to inter-slice resolution is still very large (about
7.1 respectively 6.25) so that most processing is done separately for each slice.
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Cor onal

Figure 3.4: Sagittal view showing the positions from where axial and coronal, multiple slice diffusion
weighted scans were taken.



Chapter 4

Tensors

In this chapter the data structure of a tensor is studied. First a mathematical insight of tensor data
is given. Some measurements related to tensor characteristics are presented, followed by different
ways of applying transformations on tensors. Finally the visualization of a tensor is discussed.

4.1 Tensor Characteristics

A scalar is a quantity whose specification (in any coordinate system) requires just one number. A
tensor of order n on the other hand is an object that requires 3" numbers in any given coordinate
system. With this definition, scalars and vectors are special cases of a tensor. Scalars are tensors
of order 0 with 3° = 1 components, and vectors are tensors of order 1 with 3! = 3 components.
The diffusion tensors are general tensors of order 2 with 32 = 9 components. The components of a
second order tensor are often written as a 3 X 3 matrix, as will be done here. Moreover the diffusion
tensor is a symmetric second order tensor so that the matrix is of the form

Dy D1z Dz
D = Dis Dy Do3 (41)
D13 Ds3 Dss

A tensor can be reduced to principal axes (eigenvalue and eigenvector decomposition) if the
equation

De = Xe (4.2)

or
(D—A)e=0 (4.3)

where I is the identity matrix, has a nontrivial solution.

Let Ay > Aa > A3 > 0 be the eigenvalues of the symmetric tensor D and let &; be the normalized
eigenvector corresponding to A;. As the diffusion tensor is symmetric the eigenvalues A; will always
be real. Moreover the corresponding eigenvectors are perpendicular.

The values A; can be found by solving the characteristic equation

D11 - A D12 D13
Ds1 Dypp— A Do =0 (4.4)
D3 D3y D33 — A

12
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or

A — \3(Dqy + Doz + D33) +

D D D
Dyy D3 Dy Dy Dy, Dy St
A D _D D D _D _D - _D21 D22 D23 - 0 (45)
23 33 12 22 13 33 D31 D32 D33

after expanding the determinant. The numbers A (scalars) are independent of the choice of the
coordinate system and hence so are the coefficients in Equation 4.5.
Therefore the quantities

ILi = D1+ Das + Dss

L - ‘Dn D3, ‘+ Dy, Dy ‘Du D3,
Dy3 D33 Dys Dy Dy3 D33
Dy Di2 Dis

I; = | Dy D22 Do (4.6)
D3; D3z Dss

are all invariants of the tensor D.

Using these invariants one can form infinitely many other

invariants. I; is known as the trace, I3 is the determinant of D.
The inverse transformation from an eigensystem to a tensor is given by

D =1[&1 8, 8] " - diag [\ Aa As] - [&1 &, &] (4.7)
In the case of a symmetric tensor this equation simplifies to
D =\ é&8f + \88] + Ng858] (4.8)

where the eigenvectors &; form an orthonormal basis.

4.2 Measurements

Using this decomposition, diffusion can be divided into three basic cases depending on the rank of
the tensor [16]:

1. Linear case (A1 3> Az ~ A3): Diffusion is mainly in the direction of the eigenvector of the
largest eigenvalue:

D~ )M\D; = \é el (4.9)

2. Planar case (A1 = A2 > A3): Diffusion is mainly in the plane spanned by the two eigenvectors
corresponding to the two largest eigenvalues:

D ~2X\ D, = )\ (&18] + &:87) (4.10)
3. Spherical case (A1 =~ A2 ~ A3): Diffusion is isotropic in all directions:

A general diffusion tensor D will be a combination of these cases. Expanding the diffusion
tensor using these base cases gives:

~ AT a AT a AT
)\1(3181 + }\28292 + }\38393

(A1 — A2)éré] + (A2 — A3) (6187 + @287 ) + A3 (&18] + &7
()\1 — )\Q)Dl + ()\2 — /\3)Dp + A3D,

D
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where (A1 — A2), (A2 — A3) and A3 are the coordinates of D in the tensor basis D, D,, D,. This
relation between the eigenvalues of the diffusion tensor can be used to classify the diffusion tensor
according to a geometrically meaningful criteria. By using the new basis for the tensor, measures
are obtained of how close the diffusion tensor is to the generic cases of line, plane and sphere. The
generic shape of a tensor is obtained by normalizing with a magnitude measure of the diffusion. A
useful measure in this context is the magnitude of the largest eigenvalue of the tensor, normalizing
the sum of the measurements to 1:

AL — A2
== = 4.1
a N (4.13)
A2 — A3
= 4.14
CIJ Al ( )
A3
== 4.15
Cs )\1 ( )
q+ceptes=1 (4.16)
An anisotropy measure describing the deviation from the spherical case is:
A
cazcl—}—c,,zl—cszl——3 (4.17)
A1

Smoothing In image processing a common operation is smoothing of the data to reduce the
noise level. For diffusion data, an independent smoothing of the tensor components has proven to
be a robust method. Figure 4.2 shows the effect of applying a Gauss filter to each component of
the field in Figure 4.1. Figure 4.3 is a field where the tensors have a clear bias in one direction (the
maximum angle between the eigenvectors corresponding to the largest eigenvalue was set to 10°).
When smoothing this field, the bias is clearly preserved (see Figure 4.4). This form of smoothing
also allows to perform the computation in the tensor-domain.

3 <= I e e s - 9w
¢ o e 0o a9 @ o @ @ @

¢ - = s | wm § F 7 N
® © ©® & @ o © a @ o

] o--.\-g-.ﬂ
¢ @ © e o e & 2 0 @

- W . A ] &« @
e © ©® © © & @& @ @ ®

\Q'/ S N
2 & @ @ @ 9 & a3 = O

[ ] . »

® ¢ = 1 s 8 e @ ®

7 0 I A # s b e . o @ O © ©® © © © °©o
. Figure 4.2: Smoothing with Gauss filter of
Figure 4.1: Random tensorfield length 5

Interpolation Similarly the transition from one tensor to another, i.e. the interpolation of
tensors, is also performed on the single components of the tensor which leads to a result as shown
in Figure 4.5. This interpolation is certainly the safest if no information of the structure between
the tensors is available. But it is not the only possible transition. Figure 4.6 shows a transition
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Figure 4.3: Random tensorfield with biasin one ~ Figure 4.4: Smoothing with Gauss filter of
direction length 3

between two tensors where the shape of the tensor is preserved during the transformation. This
form will be further discussed in Section 7.4 on page 34, when the displacement of a tensorfield is
discussed.

=00 000 (0 |

Figure 4.5: Interpolation of single components of two tensors in 9 steps

=777 /) | |

Figure 4.6: Interpolation of two tensors in 9 steps by keeping the shape

4.3 Visualization

Unlike scalar data the tensor is a three dimensional structure at each voxel position. Therefore
simple grayscale images are not suitable for the representation of tensor data. Some ways of
displaying tensor fields are presented and discussed here.

The tensor can be represented as an ellipsoid where the main axes lengths correspond to the
eigenvalues and their direction to the respective eigenvectors. This method of display has already
been used to illustrate the tensor characteristics in the previous section.

However, when displaying tensors as ellipsoids, there is no difference between an edge-on, flat
ellipsoid, and an oblong one, or between a face-on, flat ellipsoid, and a sphere. By assigning a
specular intensity and power to the ellipsoids, the reflection of the light source gives an insight
of the third dimension of the ellipsoid. This allows a distinction between the ambiguous cases
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mentioned. Also the field can be rotated in all three dimensions so that the ellipsoids can be
inspectioned from any direction.

In the implementation, the tensors are classified into three different classes depending on their
shape, and color-encoded according to the class they belong to. The tensors are assigned to a class
depending on how close to a line, plane or sphere they are:

0 : ¢ 2cp,c
class=¢ 1 : ¢, >, ¢ (4.18)
2 1 cs2a,0

Figure 4.7 illustrates this displaying technique, where class 0 tensors are displayed in blue, class
1 tensors in yellow and class 2 tensors in yellow with the transparency set to 0.4. More example
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Figure 4.7: Visualization of tensors using ellipsoids. Example showing the corpus callosum of an
adult human brain

images using this representation of tensors can be found in Appendix B.

The representation of a tensorfield in ellipsoids is certainly limited in size, since the overall
information provided is too large for a visual inspection. Therefore two dimensional representations
of the tensors are useful when observing larger objects.

One way of visualizing the tensors as two-dimensional objects it to use blue headless arrows
that represent the in-plane components of ¢;€; [17]. The out-of-plane components of ¢;&; are shown
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in colors ranging from green through yellow to red, with red indicating the highest value for this
component. Figure 4.8 shows the example slice using this visualization technique.

Figure 4.9 shows another way of color encoding the eigenvector corresponding to the largest
eigenvalue. Here the components of the first eigenvector €;,, €1, and €;, are multiplied by the
length of the eigenvalue A;. The red, green and blue (RGB) values for the color at a position
(i,J, k) are then set to

R = kMeéi,
G = l/\lély
B = m)\lélz (419)

with k,m,l parameters to scale each component into a range from 0 to 255.

The disadvantage of this form of visualization is that fibertracts change color when changing
direction, even though these color changes will be smooth. Nevertheless, it is a useful visualization
to get an impression of the quality and the content of the data set.

Figure 4.9: Visualizing tensors by color-
Figure 4.8: Visualizing tensors with headless  encoding the largest eigenvalue, -vector
arrows and dots representing c;€;

Finally the different measurements presented in Section 4.2 can be represented as grayscale
images. Figure 4.10, 4.11 and 4.12 show this measurements for the same subject.

The program main allows the display of any tensorfield which has been preprocessed as described
in Chapter 5. The displaying of tensor data sets with ellipsoids is a very computation intensive
process. It is therefore recommended that in displaying an image that one begins with a very small
data window to see if the result is presented in a reasonable time.
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Figure 4.10: Grayscale representation of the  Figure 4.11: Grayscale representation of the
measurement close-line ¢; measurement close-plane c,

Figure 4.12: Grayscale representation of the measurement close-sphere ¢,



Chapter 5

Data Preprocessing

This chapter describes how the data is processed from output of the scanner to the actual diffusion
tensor representation.

5.1 Solving the Basic Equations

LSDI recon is a program that solves the Stejskal Tanner Equation 3.18 presented in Section 3.3.
As input the program requires the images produced by the scanner as well as a parameter file.
The eight images provide eight equations for M in each voxel which are solved in a least-squares
sense for the 6+1 unknowns: the six independent components of the symmetric diffusion tensor D
and My. Besides solving the equations, LSDI_recon reorients and interpolates the diffusion tensor
data so that the resulting output has a standardized orientation and shape. The output is saved
as *.pic files of size 256 x 256 with short precision and represents the eigenvalue and eigenvector
decomposition of the tensor. There is no header and therefore no additional information of the data,
is stored. Table 5.1 describes the content of the single images that are produced by LSDI_recon.

File extension Content
file-SxxL1le.pic first eigenvalue
file-SxxL1x.pic | first eigenvector
file-SxxL1y.pic
file-SxxL1z.pic
file-SxxI.2e.pic second eigenvalue
file-SxxIL.2x.pic second eigenvector
file-SxxL2y.pic
file-SxxL2z.pic
file-SxxL3e.pic third eigenvalue
file-SxxL3x.pic | third eigenvector
file-SxxL3y.pic
file-SxxL3z.pic
file-SxxAAlpic | Absolute anisotropy index
file-SxxADC.pic | Apparent diffusion coefficient
file-SxxDWLpic | Diffusion weighted image
file-SxxRAILpic | Relative anisotropy = %
file-SxxT2W.pic | T2 weighted image

Table 5.1: File extensions and content of the files generated by LSDI_recon. xx represents the slice
number.

19
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5.2 Conversion to Tensor Fields

In this step the files generated by LSDI_recon are converted into floating point precision data
structures representing tensor- and eigenfields. Additional images produced by LSDI recon are
considered as background images and are also collected into a single data structure. An additional
xml-file containing information about the data is generated. The xml-file and its Document Type
Definition (DTD) are described in Section 9.3. Most important it stores the field dimension, voxel
dimensions and the location of the data without any file extension. Table 5.2 describes the file
extensions used and their meaning. Some of the files are generated in later steps and described
when they first appear.

File extension Content

xml the xml-header with information of the data

.ten the tensorfield data

.eig the eigenfield data

.bg the background images

.mask.0xx the mask for the data (MRI file format)
.masked.xml, .ten, .eig, .bg | masked data

final-param-file text file with parameters for the rigid transformation

.aligned.xml, .ten, .eig, .bg | the aligned data
.matched.xml, .ten, .eig, .bg | the matched data

.matched.dx displacement field in x-direction
.matched.dy displacement field in y-direction
.matched.dz displacement field in z-direction

Table 5.2: File extensions and content of the files generated and used in this application

5.2.1 Orthogonalization

Despite the fact that LSDI_recon does a lot of enhancement of the data the output cannot di-
rectly be used as tensor data. Most importantly the simpler Equation 4.8 for conversion from an
eigensystem decomposition to a matrix cannot be applied since it was found that the eigenvectors
produced by LSDI _recon do not build an orthonormal basis. As the tensor has to be symmetric
it would be incorrect to apply the general Equation 4.7 to build a matrix from the eigensystem.
Making the matrix orthogonal after transformation by computing D’ = 0.5(D + DT), which is
the best approximation without any prior knowledge when using the norm ||D||* = 3=, (Dy;)?,
deforms the tensor in an unwanted manner as the off-diagonal elements often have opposite signs.

To built an orthonormal basis with the eigenvectors given, it is assumed that the signal-to-
noise ratio is best for the largest eigenvalue and therefore also for the corresponding eigenvector.
It then makes sense to keep the eigenvector corresponding to the largest eigenvalue and correct the
remaining two eigenvectors. The second eigenvector is projected into the plane normal to the first
eigenvector. This plane is described by

élzm + élyy + élzz =0 (51)

where é; is the first eigenvector. The projection into the plane is then given by

éIQ = S(Ckél + é2) (52)
where o o o
€1,€2; + €1y€2y +e1.€2;

el (5:3)

a=-
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and s is a scaling parameter to normalize the result to length 1.

The third eigenvector is computed as é; = é; x &,. In case the distance ||é5 — &s]| is smaller
when taking the negative value —&j}, then the sign of the third eigenvalue is changed. Figure 5.1
visualizes this process. The mean distance between ||&}, — &;|| for older data sets was found to
be about 0.1 while ||&; — &;s]|| usually was 0.2 For newer data sets these values were around 0.05
respectively 0.1. These errors are output when orthogonalizing the eigenfield.

A N
e1= €1

Figure 5.1: Orthogonalization of the eigenvectors

5.2.2 Filtering

Older data sets show some one-pixel wide strips in the border to the background respectively
inside the brain in the border to the cerebrospinal fluid (CSF). The tensors in these strips have
huge eigenvalues compared to their neighborhood. They certainly do not provide any meaningful
information and should be removed completely. Therefore a simple 3 by 1 filter is incorporated in
this processing step which acts like a Median filter only on locations where the left and right voxel
belong to the background. No other smoothing or filtering of the data is performed at this step.



Chapter 6
Rigid Registration

Before any local comparison of data values between subjects can be done, the data sets should be
rigidly aligned so that the shapes of the objects are as close to each other as possible while keeping
the single shapes unchanged. This involves three basic transformations:

1. Translation
2. Rotation
3. Scaling

P. Woods [29] gives a very detailed explanation on how to apply rigid transformations. Here
existing programs are used to find the transformations and apply them to the data. They are then
extended to process tensor data.

The basic characteristics of rigid transformations are linearity and preservation of internal
distances and angles.

6.1 Masking

First, the shape of the object of interest has to be extracted as binary data where the background
is assigned the value o and the object the value 6. In the case of baby brains this could easily
be done by thresholding the T2 weighted background image. After the threshold has been set to
best extract the brain this mask can be applied to all the remaining data, i.e. the tensorfield, the
eigenfield, and the other background images. The mask is stored in the standard MRI-file format
for further processing (see Table 5.2 page 20).

6.2 Alignment of Grayscale Data

The task is now to find the nine transformation parameters (3 rotation angles, 3 translation values
and 3 scale factors) that best align one mask with the other. Two functions are utilized. First
a rough estimation is computed. This is then improved by small variations of the first approach.
optimizing the result. The resulting transformation can be applied directly to all background
images and the single components of the tensor field.

By applying a transformation to scalar data, the value at a voxel position (i, j, k) is displaced
by a vector U = (u,v,w)? = (u(i,j,k),v(i,j,k), w(i,j,k)). This vector will usually not be
a multiple of the respective voxel size so that the original position is displaced into a position
between raster points. As the resulting image has a discrete raster like the original one, the value
at the destination raster position has to be estimated. Two possible estimations are implemented:

22
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Nearest neighborhood or linear interpolation. The difference of the methods can be seen in Figures
6.2 and 6.3, where the synthetic square of Figure 6.1 was rotated by 45° degrees.
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Figure 6.1: Original synthetic square

6.3 Alignment of Tensor Data

In the first step the tensors are decomposed. For each component, a scalar field is built. These
scalar fields are then transformed according to the previous section and the resulting scalar fields
are merged into a new, rigidly transformed tensorfield.

As tensors have an internal structure that is related to the body they belong to, any transfor-
mation has to consider local changes of this structure. That is, after merging the scalar fields, the
resulting tensors have to be further processed.

For the case of a translation, this local change is trivial since the neighborhood of the tensor
under inspection is displaced by the same amount. Any rotation of the body leads to a local
rotation of the tensor by the same amount as the body was rotated. In the tensor-domain this
leads to

D'=R"DR (6.1)

where R is the rotation matrix applied to the body and det(R) = 1. In the eigen-domain this is
equivalent to rotating the eigenvectors by the rotation matrix:

é; = Re; (6.2)
It is not evident how to apply the scaling of the body locally on the tensor. Mathematically

this would be
D' =8TDS (6.3)
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Figure 6.2: Rigid rotation of synthetic example ~ Figure 6.3: Rigid rotation of synthetic example
with nearest neighbor interpolation with linear interpolation

in the tensor-domain, where S is a diagonal matrix. In the eigen-domain this would lead to a
scaling of the eigenvalues

where s; is a linear combination of the global scale parameters a; according to the direction of the
corresponding eigenvector &;.

When considering an application like the alignment of brains, it is no longer obvious if the
scaling of the tensor as a meaningful operation. Consider a small subject that is aligned to a larger
one, say twice as large. Enlarging the tensors by a factor of two would mean that the diffusion in
the corresponding tissue is now twice as large as before the transformation. Fibers probably do
not change their diffusion properties in such a manner when the subject is growing or in different
subjects. Missing values are interpolated component-wise when the rigid transformation is applied
on each component, as described above, so that the consistency of the diffusion data is guaranteed
otherwise. Therefore it is suggested here, that local scaling of the tensors not be applied in rigid
registration. Figures 6.4 and 6.5 show the same example as in the previous section, but now with
local transformation of the tensors.
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Chapter 7

Nonrigid Registration

Nonrigid registration is the general term for an algorithm for the alignment of data sets that are
mismatched in a nonlinear or nonuniform manner. The term ”matching” is used to refer to any
process that determines correspondences between data sets [32].

This chapter discusses all the methods that have been used to align two tensorfields with a
nonrigid registration. The following series of steps are used:

1.

= w N

5.
6.

Extract points with high local structure in one data set.
For each extracted point find the best corresponding point in the second data set.
Check the displacement for the selected points and remove overlapping displacements.

Interpolate the displacement for the selected and matched points to get a displacement field
for the whole data set.

Apply the interpolated displacement field on the second data set.

Eventually improve the alignment by using multiple resolutions or looping.

For simplicity in this section any field is called a three dimensional image I with values I (4, j, k)
at position (i,4,k)7. The values I(i,j,k) can therefore be any of the types scalar, tensor or
eigensystem. The stationary image is Is and the moving Ip;. The transformation from Ip; to Ig
is denoted T

Is =T(Im) (7.1)
More precisely the goal is to find ~
Iy =T(Iy) (7.2)
which is closest to Ig: B
Is ~ jl\/I = T(IM) (73)
The displacement field is
u u(i',j', k')
U=| v | =1 v@j,K) AN (7.4)
w w(i', j', k')
so that
Is(i,j,k) ~ Im(i'+u, j' +ov, k' +w) (7.5)

= IM(ll + u(ilijli kl)? jl + /U(il7jl7 kl)’ kl + w(il’jIJ kl))

26
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A point P at position (i, j, k)7 in Is in the stationary image has a neighborhood Ns(P) which
is a small window of size 0s X 05. A neighborhood of a point @ at position (i’,5’, k") in Ins of
size opr X o is referred to as Nar(Q). These notation conventions are summarized in Figure 7.1.
Furthermore a collection of n points £ = {P;|P; € I,i = 1..n} with £ C I is denoted Lp(I).

Moving Dataset Stationary Dataset
Iy T ls

Q =
1, (155K) P

N, -U

Figure 7.1: Notation conventions used

Every point @ for which U(Q) is known can be displaced to a new location P = @ + U(Q). If
U(Q) is known for every point @) € I, the whole image Ips can be displaced. The resulting image
I'; though will have points P which have not been assigned a value from Ijs. That is, the function
T is not directly invertible, since U is not necessarily onto and not necessarily one to one.

As a result an image I}, is expected that has values everywhere. Instead of interpolating the
points P to get missing values for P the matching procedure can be inverted to get a function
T—!. This second approach is used here. Thus points are selected in the stationary image Is.
When the corresponding points have been found and the displacement field interpolated this leads
to a displacement U ! approximated by —U from the stationary to the moving image. Now for
every position in a resulting image I, the position where the values came from is known, and the
transform is onto, so that Lp5(I},) is empty.

7.1 Point Extraction

To find a correspondence between two points both points must be uniquely identifiable in a certain
neighborhood, so that the correspondence is unambiguous. The term ”certain neighborhood”
means a region that is large enough so that the corresponding point certainly lies in it but small
enough so that no two equal correspondences are present. This is well known as the ” Aperture
Problem”. This section assumes that this constraint is met.

A point on a line for example cannot be unambiguously matched to a point on a line in the
second image if no additional information is provided. A corner instead has a unique counterpart
in both images and can therefore be matched uniquely, of course only if the corner is present in
both images. A measure of cornerness tells how much structure there is around a certain point.

In the scalar case the derivatives of the image I are computed and the outer product of the
resulting vector is built, which is by definition the correlation matrix H. With the derivatives

0 0 0

IL,=—1I; I,=—1I;, I,=—1I; 7.6
or Y oy 0z (7.6)
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H becomes
I, I§ LI, I,
H= I, (I Iy I,)= L1, I; II, (7.7)
I, LI, LI, If

which is a symmetric matrix where the determinant always equals zero. A classical measure of
local structure is to use the local expectance of the values in H, i.e. averaging the components of
H over a window of size oy X opn.

H=| LI I L (7.8)
LI, LI, I

This matrix may have a nonzero determinant, since I}IA; # I;ZCI;Z,, as long as I;,fy,fw # 0.

An eigensystem decomposition of H allows a classification of the point under inspection in edge,
corner or flat region [1]. For the two dimensional case this is illustrated in Figure 7.2.

A1
edge
corner
/”//
flat| / "
) edge

Ao

Figure 7.2: Eigensystem decomposition of the correlation matrix

H can be seen as a tensor of order 2. The eigenvalues can be illustrated by an ellipsoid. The
rounder the ellipsoid the bigger the cornerness, i.e. the measure close-sphere in Equation 4.15 is a
measure for cornerness in this case.

For any symmetric matrix the trace is the sum of the eigenvalues

trace(H) = Z Xi(H) (7.9)

as can be seen by using Equation 4.8. The determinant is the product of the eigenvalues

det(H) = [[ x:(H) (7.10)

Using only these measurements to obtain a value for the cornerness avoids doing an eigensystem
decomposition.
Ruiz and co-workers [15] propose to use points above a threshold

H
| = dett) (7.11)
trace(H)
and remove false detections by thresholding the result with
H
, = — dettH) (7.12)

a trace(%ﬁ)N
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with N the dimension of the image, i.e. usually 2 or 3. The value of ¢, varies between one and
zero depending on the shape of the ellipsoid, one being a perfect sphere.
Here a modified version is used, where the two thresholds are incorporated in one formula. The
structure S is then defined as
N - det(H)N

S = = = (7.13)
trace(H) + o max(trace(H))

where o can usually be set to 1% or 0.01. S will have values between zero and close to one.
Using the expectance causes blurring of the point-selection since high values are diffused. The
trace of H has a non-zero value without averaging and is an edge detector [1], as

trace(H) = I? + IZ + 12 (7.14)

There are now several options to improve the point-selection. Before the process is started an
anisotropic filter can be applied to enhance edges. After using a point-selection as described the
result can be masked with the trace of H (not H !) to undo the blurring effect of the expectance
computation. Finally the local maxima of a region of the function 7.13 can be selected to get single
voxel positions.

In the case of tensorfields the points should be extracted from a structure with six independent
values. For each independent component of the tensor a matrix H; can be computed and the sum
over the components of these matrix used as a final matrix H

. (T v T
H=) Hi=| Lhy Yhy Yhiy (7.15)
=1 Z hizz E hizy E Pizz
Expectance and sum are commutative, i.e.
& &
H= ZH’ = ZH’ (7.16)
i=1 i=1

The collection of points that have enough structure and have therefore been selected, is referred to

as M(Ig)

The parameters for the point-selection in the program nonrigidreg are described in Table A.3
in page 61.

7.2 Matching

The matching process involves two steps: First finding the best corresponding points in the second
image and second locally optimizing the displacements found.

For each selected point P in Is a neighborhood Ns(P) is selected. At the same position in the
moving image I a search window N (P) is selected, i.e. an area where the corresponding point
is assumed to lie. For each point @ € Ny (P) in this search-window a neighborhood Ns(Q) is
compared to the neighborhood Ns(P) and a value measuring the result of the comparison assigned
to Q. Two different measurements of similarity for scalar data are implemented.

Maximal normalized cross correlation The normalized cross correlation (NCC) between two
windows Ns(P) and Ns(Q) of same size g X og is defined as

ke Is(k) - In (0§ — k)

NCC(P,Q) =
VEkens ) - e, B0k — B)

(7.17)
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This is computed for every position @ € Nys. The position where the NCC is maximal, i.e. closest
to one, is the best match and therefore the selected correspondence.

Least square error (LSE) Here the distance between the image values is used as measure

LSE(P,Q) = ) [s(k) — Im (k)| (7.18)

kENs

and the minimal value for all Q € N (P) is the location where the matching point is selected.

Search Strategy In both cases, the search strategy is based on brute force, that is, no local
optimization to find the best match is done. The windows that are compared, Ns(P) and Ns(Q),
can be weighted with a Gaussian function prior to comparison. This makes the matching less
sensitive to the size of the window and increases the ”importance” of the center points P and Q).

Instead of simply selecting the best matching value the resulting vectors NCC(P, Q) respectively
LSE(P, Q) are sorted so that NCC(P,0), LSE(P, 0) are the best and NCC(P,0%), LSE(P, 0%) the
worst matches. Before accepting a match the sorted vectors can be analyzed. If the best and
worst match are too close to each other, i.e. NCC(P,0) < 2-NCC(P,0%), there is not enough
structure in the search-window A (P) so that the match should be ignored. Furthermore if there
are several equally or almost equally good matches the displacement field in the neighborhood
should be considered and matching should additionally be based on smoothness of the over-all
displacement field. Only the first approach has been implemented.

In a second step, when for all points P € M(Is) a correspondence has been found, the displace-
ments are checked. Overlapping displacements, i.e. displacement vectors that cross each other are
eliminated since the tissue of a subject should not be folded. Whenever two displacements cross
each other the shorter displacement is kept and the larger removed.

7.3 Kriging

In order to obtain a displacement field for the whole volume, the sparse displacements obtained at
single locations have to be interpolated. This section describes the selected interpolation method. It
is assumed that the sparse displacement field has an unknown underlying random field. References
[35] and [38] give a good introduction and a simple example on how to use Kriging.

Kriging interpolation originates from geostatistics and is known to be the best linear unbiased
estimator because it is theoretically capable of minimizing the estimation error variance while being
a completely unbiased estimation procedure [34].

Kriging is a modified linear regression technique that estimates a value at a point by assuming
that the value is spatially related to the known values in a neighborhood near that point. Kriging
computes the value for the unknown data point using a weighted linear sum of known data values.
The weights are chosen to minimize the estimation error variance and to maintain unbiasedness in
the sampling. Unlike other techniques for scalar values, Kriging bases its estimates upon a dynamic,
not static, neighborhood point configuration and treats those points as regionalized variables in-
stead of random variables. Regionalized variables assume the existence of regions of influence in
the data. In Kriging each region is analyzed to determine the correlation or interdependence among
the data in the region and this is encoded through a function called a variogram. For the unknown
value Z at the position p within the neighborhood of known points P; with known values Z;(P;)
the basic Kriging equation is:

2(P)= Y wiZi(P) (7.19)
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Z is the actual value at a point p, and n is the number of known points used to compute Z.
The Z;’s are the regionalized variables and the w;’s the weights. Unlike other techniques which
also use a weighted sums, in Kriging the weights are not selected based solely upon the distance
between sampled and unsampled points. Kriging does not assume that the variability of the data
is linear [33].

Optimal weights are determined by enforcing the error expectation in the estimate be zero

E(Z-2)=0 (7.20)
and the error variance be minimal
VAR(Z — Z)? = minimal (7.21)

where E is the expected value or mean and VAR(Z — Z)? the mean-square-error of the dissim-
ilarity between the two variables Z and Z. These two conditions make Z the best linear unbiased
estimator and are the base equations to derive the Kriging system of equations. Furthermore the
unbiasedness implies that the weights must sum up to one:

dwi=1 (7.22)

As an exact interpolator, Kriging predicts known values with zero error. Using the method of
Lagrange Multipliers it is possible to obtain a linear equation for the weights w; of the estimator,
where v(|| P; — P; ||) is the evaluation of the variogram between the points P; and P;:

10 A P=Pl) - AU Pa=Pil) 1\ [ wn (| Bo— P |)
A1 Pe=Pi ) A(0) o A Pe=Pl) 1| [ (| By =Py |
A PP l) A Pa-Pall) - A(0) 1| | w, (| Bo - Pu )
1 1 1 0 1 1
(7.23)

Variogram Models The variogram expresses the variability of a spatial process as a function
of distance and direction. Suppose the data is collected according to a random spatial process in
R™, i.e. we observe Y(F;),i € R*. It is assumed that VAR(Y (P;) — Y(F;)) is only a function of
the distance vector P; — P;. The process is said to be isotropic if it only depends upon || P; — P; ||,
the Euclidean distance between sites. Then the function 2y(|| P; — P; ||) = VAR(Y (P;) — Y (F;))
is called the wariogram, while (|| P; — P; ||) is the semivariogram. Typically, the variogram is
assumed to increase with the distance d = || P; — P; ||, assuming that the difference between pairs
of observations closer in space should tend to exhibit less variability than that for pairs further
apart. It is often the case that after a certain distance, called the range a, v will level out at a
value called the sill. The range is therefore the distance beyond which the deviation in the values
does not depend on distance and hence values are no longer correlated.

In addition, there may be a discontinuity at the origin, the so-called nugget effect. This means
that the fitted model does not pass through the origin, but intersects the y-axis at a positive value
of 4(0), which is 72. This quantity is an estimate of FE, the residual, that represents spatially
uncorrelated noise associated with any value of a random variable Z at P. This terminology is
illustrated in Figure 7.3.

The relationship between the variogram and the covariance is given by [36]

2v(d,7%,0%,a) = 2(7* + 02 (1 — p(d, a))) (7.24)

where the sill is 72 + o2, the range a and p(d,a) a parametric correlation function. The semivari-
ogram is also a graphical display of v, i.e. semivariance, versus distance.
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Exponential Variogram

Sill

Di st ance

Figure 7.3: Variogram parameters

Name 1-p(d,a)
Linear <
Exponential l—e 4
Gaussian 1—e (D)7
: 0.5(4)3 -152 ifd<a
Spherical 0 olse
ay2 _ d)3 d\s _ LAY
Cubic 7(5)? —8.75(£)° +3.5(5)° —0.25(5)" ifd<a
0 else

Table 7.1: Common Parametric Correlation Forms ([36] and [35]).

32

Table 7.1 is a collection of different parametric correlation functions. Figure 7.4 shows the

semivariogram (Equation 7.24) for the functions in Table 7.1 with 72 = 0 and o2 = 1.

In most cases the variogram is unknown and is approximated by a process called structural
analysis. As there is no prior information on the resulting displacement field this approach is not
applicable. Instead different variogram models are implemented so that the best model can be
empirically determined by comparing the results of the registration process.

An example interpolation is shown where a synthetic example is randomly sampled at 10% and
interpolated using the linear variogram model and two different neighborhoods (see Figure 7.5).
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Example of using Kriging interpolation. (a) Original image; (b) Randomly selected

10% of the points; (c) Interpolation using linear Kriging and neighborhood 5; (d) Interpolation
using linear Kriging and neighborhood 10. It can be seen that in (d) a value reaches further so

that the transition from black to white is smoother.
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7.4 Local Warping of Tensors

After the displacement field is known for every position in the image Is the image I}, = T (Ip)
can easily be computed since every location in I}, "knows” where it comes from. This is done for
each component separately. Again, as with the rigid registration, the problem arises, that tensors
are structures and have to be locally transformed according to the displacement.

Three different local transformations are presented and discussed here. The first is proposed
in reference [15]. D' is the tensor in image Ijs that is displaced by U to a new position P. The
transformation is T. Then the local transformation is applied on D’ to get the final tensor D at
the position P.

Local Warp with Scaling The deformation gradient A is computed which is the differential of
the transformation or the Jacobian matrix of the mapping

el el 0
oz Tz T. oz T”:

8 xr
A= %Ty aiTy %Ty (7.25)
%Tz a_yTz ETZ

where Tj is the transformation in the ¢th dimensions. Combining Equations 7.1 and 7.6

T(IM) = IM(ZI + u(ilhjla kl)v jl + U(ilajlv kl): kl + w(ilajla kl)) (726)
A can be expressed in terms of the displacement U = (u, v, w)”

A(z+u)  I(z+u) A(z+u)

ox oy oz

A = o(y+v) dlytv)  A(y+v)
ox oy oz

A(z+w) I(z+w) I(z+w)
oz oy oz
ou du du
— ov ov ov

- o 1+ dy 8z (727)
Sw Sw 14 9w
ox oy oz

The local relation of D and D' is then
D=ATD'A (7.28)

This local mapping of a tensor includes rotation, scaling and distortion of the tensor. Figure 7.7
illustrates the result of this method on a synthetic square (see Figure 6.1 on page 23). The applied
displacement field is shown in Figure 7.6.

As can be seen, the shape of some tensors has been changed quite a bit.

Local Warp without Scaling In a second approach the scaling of the tensors is removed while
still allowing the tensor to change shape. This is done by rescaling the result of Equation 7.28 so
that the determinant of D is the same as for D’:

1

— T
D= WA D'A (7.29)

The result is displayed in Figure 7.8.

Local Rotation Using the Single Value Decomposition (SVD) the matrix A can be decomposed
in a pure rotation component R and a strain component W. The SVD for any non-singular square
matrix is given by

A=Uxv7T (7.30)



CHAPTER 7. NONRIGID REGISTRATION 35

where U and V are orthogonal matrices and ¥ is a diagonal matrix. The matrix A can be now
written in the form

A=WR (7.31)

where W = UV is a matrix with orthogonal columns and R = VIV is a symmetric, positive
semidefinite matrix 1. A is said to be a pure strain if W = I with I the identity matrix, while if
R =1, Ais called a rigid rotation at this position [15]. Therefore any deformation of the tensor can
be avoided by applying W in Equation 7.28 instead of A. For the case of the synthetic square this
can be seen in Figure 7.9. This form of local rotation is the transformation mentioned in Section
4.2 and shown in Figure 4.6.

Again, as was done for the rigid transformation, it is argued here to use this transformation when
nonrigidly aligning the tensor images. When aligning two different subjects the structures should
not be changed. In the scalar case gray-values are displaced to the new position but their value is
not changed. Equivalently in the case of tensors, a local rotation is part of the transformation but
changing the shape is not obvious and meaningful in all cases. The meaning of any local change
would have to be studied for each application separately and even separately for each tissue, so
that it is safest to not apply any strain. Also, if the point-extraction and the matching part of the
nonrigid registration are based on measurements of the tensors that depend on the shape, changing
the shape after the transformation leads to a change of the similarity. This can make the chosen
displacement appear wrong after the local transformation.
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Figure 7.7: Distorted synthetic square with full

Figure 7.6: Synthetic displacement applied, local warping
used to visualize local warping

The implementation allows to choose between any of the described local transformations (see
Table A.3).

7.5 Multi-scale Matching

The overall process can be improved in two ways; looping and matching using multiple resolutions.
Looping is simple since the second loop does not need to know anything about the previous pro-
cessing and can be seen as a completely independent matching process. If the overall displacement

Thttp:/ /www.cs.ut.ee/~toomas_l/linalg/lin2/node26.html



CHAPTER 7. NONRIGID REGISTRATION 36

NN\
p

4

Figure 7.9: Distorted synthetic square only

Figure 7.8: Distorted synthetic square with lo- " 3
with local rotation of the tensors

cal warping but without scaling

field should be known, i.e. not only the final match is of interest, the problem of combining the
displacement fields is the same as for multiple resolution matching and will be discussed there.
Figure 7.10 illustrates the principle of multi-scale matching as it has been implemented. The single
steps are:

1. Optionally smooth the given images Iys and Ig with a Gaussian filter. This step is not useful
when working with binary or segmented data, but for all data types that have continuous
values.

2. Downsample the image to get Iy, I;...I5%; and Ig, I§... I3

@

a) Select points in the lowest level I
b) Threshold the selection

Find the matches for the selected points, i.e. the displacements at this positions.
Upsample the displacements to all the higher levels.

Interpolate the displacements

Apply the interpolated displacements to the corresponding image I%,

Copy the resulting image back

© ® N o o s

While n > 0 set n =n — 1, else stop
10. Go to step 3

This form of multi-scale matching can certainly be improved. E.g. step 7 the displacement in
higher levels would not need to be applied. Instead the resulting displacements could be added
and in a final step the overall displacement could be applied on Ips. Combining two displacement
fields though is not a trivial problem. For at least one of the transformations the inverse has to
be known, but 7! cannot be computed directly as has been explained in the beginning of this
chapter.

The size of the search-window is adapted to the current scale. For the lowest scale it is the
specified search-window, divided by the number of scales times the scale-factor. When moving
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towards higher levels the search-window is a bit larger than twice the scale-factor, since any larger
displacement should have been found in the lower levels.

Moving Dataset Stationary Dataset
I I
M S

O
L
Ol =41 | O]

N

“ O\ [HEHO ¢

/4 3b 3a
AN

Figure 7.10: Multi-scale matching. Explanation see Section 7.5.

7.6 Measuring Results

To test the nonrigid registration synthetic displacement fields were generated and applied on dif-
ferent test images. The synthetic displacement Usyn:n is generated separately and independently
for each component u,v,w. First a maximal displacement d,,,, is fixed. Then a regular grid
with distance dgrig > dmaee is built and each position is assigned a random value z between
—d’"% <z < d”%. The sparse grid is interpolated using Kriging with a linear variogram model
so that smooth random displacement fields are generated. Ugynsn is then applied to Is to get a
test image Ips. Then the nonrigid registration technique described in the previous sections is used
to align Ips back to Ig.
Measuring the results, i.e. the improvement from

/ similarity(Is, Ing)dQ (7.32)
Q
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to
/ similarity(Is, T (1p))dQ (7.33)
Q

where () is the data set, clearly depends on the similarity measurement. A visual inspection of the
image I's — T'(Ipr) gives a very good impression of the results.

For the binary test data measuring the improvement is trivial and boils down to be the number
of voxel positions that have different values in each image. The same principle can be used when
matching segmented data. Here the number of positions with different classes in each image is
a meaningful measure for dissimilarity. In grayscale data counting positions where the graylevels
are different is not very suggestive since this will be the case almost everywhere in the body. Of
course the number should decrease as the border of the body should be better aligned after the
registration, but this will be a small percentage. The total distance

> s, 5, k) — T (I (i, 5, k)|l (7.34)

.3,k

is much more suitable since it linearly weights the difference at each position. Similarity between
tensor data sets needs to be defined to be able to use the last formula. Reference [16] proposes the
inner product of two tensors

i,J
being the equivalent to the vector product as similarity measure.

When registering medical data the goal is to align the structures of one data set to the other
data set. Ideally the structures in both data sets I's and Ijs are known, e.g. by segmenting the
data. The displaced structures can then be compared.

Different tests are documented in Table 7.2. The parameters used are explained in Table A.3
in Appendix A.6. The process for the case of the chessboard is illustrated in Figure 7.11 and for
the segmented baby brain in Figure 7.12.

Test images Parameters used Results
Chessboard and synthetic | ./nonrigidreg 0 1938 points different
displacement -m=0 -sw=21 -mw=9 -d=15 before matching,
-r=20 -pm=2 -km=2 50 after matching
MRI image and synthetic | ./nonrigidreg 1 133016 total graylevel distance
displacement -s=pointmatcherdata/cm.001 | before matching,
-o=pointmatcherdata/cm 42167 after matching
-syn=pointmatcherdata/cm
-mw=9 -sw=15 -m=1 -r=15

Table 7.2: Comparison of results when testing with synthetic deformation fields
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(f)

Figure 7.11: Chessboard example for the nonrigid matching process. (a) Original image;
(b) Synthetically displaced version; (c) Difference between (a) and (b); (d) Displacement field
for nonrigid registration from (b) to (a), zoom into the center region; (e) Resulting match; (f)
Difference between (a) and (e).
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Alignment of syntheticaly displaced MRI scan to original scan as an example

Figure 7.12

Original image; (b) Synthetically displaced version; (c)

Difference between (a) and (b); (d) Displacement field for nonrigid registration from (b) to (a); (e)

Resulting match; (f) Difference between (a) and (e).
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for the nonrigid matching process.



Chapter 8

Classification

Classification and segmentation can be defined as follows [37]:

o (lassification involves labeling pixels in terms of different classes by grouping pixels that
have similar characteristics, based on the measurement or estimation of different features
known to exist in the image using low-level operators with small areas of support. It does
not demand spatially contiguous voxels within any single class.

o Segmentation is the parcellation of the input image into meaningful contiguous groups of
voxels. The word "meaningful” indicates a task-dependent definition. This can involve the
identification and delineation of commonly-recognized structures in the human brain that are
labeled as such with neuroanatomy textbooks.

The classification of tensor data should connect regions with similar local structure, i.e. fiber-
tracts in the corpus callosum. These fibertracts should be present in all subjects. An alignment
of tensor data should match the corpus callosum of two subjects. As explained in the previous
section the classification would also allow to test the alignment process by comparing the classified
data sets.

One possible way of classification of tensor data has already been presented in Section 4.3 where
the tensors have been classified depending on their shape.

This is the simplest approach where the classification is based only on the values of the voxel
itself. The classification and the measurements are best based on the eigenfield, since the eigen-
domain has a much more intuitive meaning. If a useful classification has been found, it is worthwhile
to find a corresponding one in the tensor-domain, since this would save the eigensystem decompo-
sition of the tensorfield.

Different measurements can lead to a number of different classifications. Examples are:

Ay

MM M
>‘3

)\2_)\’2

e Similar size: [, \i ~ [[; A}

e Similar shape: and % ~
3

e Similar direction of the largest eigenvalue: cos(€y, é’l) <threshold

In the implementation a threshold #; is set to select certain voxel positions where the tensor is above
this threshold. The image is searched from top left to bottom right for tensors above the threshold.
The measurement close-line is used to select these starting points. As soon as a position is found
where the tensor is above t;, a new label is assigned to this position and the tensor compared
with its neighbors. If the similarity is close enough, i.e. above a threshold ¢, then the neighbor is
assigned the same label and is set to be the new location. This new location is now expanded the
same way. The process stops when no neighbor is similar enough, i.e. the threshold t, is above
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the similarity. Then the image is again searched to find the next position where the tensor has not
been assigned a label yet and is above #;.

Any tensor that is not assigned a label but is not equal to zero is assigned a ”rest-group”
label so that the body does not get mixed with the image background. Finally a histogram of the
labeled image is build and the labels are sorted according to their size. The resulting labels can be
displayed with the program main.

The described process is certainly in a very early stage and does not produce useful results yet.
But it helps to get an insight on the tensor data and can be used as a starting point for further
implementations.

The label-growing approach has also been used to ”clean” the mask generated in Section 6.1.
The thresholded T2 weighted image is labeled, (with the threshold ¢» for the neighborhood set to
zero), so that any connected group is assigned the same label. Then only the largest label is kept,
so that the brain, as the largest object in the image, is the only remaining label.

Segmentation into different tissue classes can be performed using imager!. This program allows
to manually select example points of several images and does a segmentation of the data based on
k-Nearest-Neighbor estimation.

The following Figure 8.1 shows some results obtained with the implemented classification
method.

Figure 8.1:  Classification of tensor data. (a) Thresholding of different measurements (T2W
image, DWI image and ADC image); (b) Label growing, adult human brain, no smoothing; (c)
Classification in three groups depending on the shape of the tensor, adult human brain, Smoothed
with Gauss filter of length 3; (d) Same classificationa as example (c), baby brain at 40 weeks
postconceptional age.

Lwritten by S.Warfield



Chapter 9

Implementation

This chapter should help to get started with the program code and expand it for further needs.
Appendix A is a documentation of the most important classes, programs, and the choosen xml
data representation.

9.1 Class Hierarchy

Figure 9.1 shows class hierarchy. Only the main dependencies are illustrated. The libraries used
are VTK for the visualization, CLAPACK for the mathematical computations and Xerces-C for
processing the xml-header. The rightmost column are files containing functions that do not belong
to a class and therefore do not have any private members. The bottom row shows the main
applications that have been implemented. Only the main dependencies have been indicated.

tensor.h and eigen.h are classes implementing the low-level data structures for a tensor re-
spectively an eigensystem. Every operation that acts on single elements of these types should be
implemented in the respective class.

basefield.h contains the basic definitions of any field. The class itself does not contain any
field though. It mainly reads and writes the xml-header. The information is stored as protected
members so only derived classes can access them directly. Functions are provided to set and get
the single characteristics of a data set, so that accessing these values is equal for all types of data
fields. The most important informations stored in this class are the volume dimensions, the voxel
dimensions and the location of the data files.

rsfunctions.h For scalar data, i.e. floating point or integer numbers, no special class has been
implemented. That means that any function that works on scalar fields has no private members and
therefore all information (volume and voxel dimensions) need to be provided when the functions
are called.

tensorfunctions.h Functions that use the tensor data structure, that is 3 x 3 matrices for
computations, are placed in tensorfunctions.h. Like functions in rsfunctions.h they do not
belong to a class and so volume and voxel dimensions need to be provided. The most interesting
functions are localWarpTensorField(...) for the local transformation of the tensors after they
have been displaced and findPointsInFloatArray(...) to select the points with high local
structure. displaceTensorField(...) applies the displacement field on every single component
of a tensorfield.
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The classes tensor.h, eigen.h and basefield.h build the bases for the current implemen-
tation and are therefore documented in Appendix A. For any class and function collection the *.h
file contains a small documentation for each function.

tensorfield.h, eigenfield.h, and background.h are then all derived from basefield.h and
inherit all its members. When initializing one of this classes the actual field of the respective type
is generated, which can be empty or read from a file.

display.h contains some basic functions to display images. For scalar data the display is gener-
ated by writing a temporary ppm file. Then a system call opens the generated file with xv. The
temporary files are all deleted when the destructor of the class is called.

The tensor representation as ellipsoid uses VTK. In this case the VTK renderer is used to
display the image.

The remaining functions in this class can be used to display specific properties of a tensor- or
eigenfield.

rsfunctions.h is not a class but a collection of functions. Any function that does not need a
private member or specific data structures such as tensors or eigensystems is placed in this file.

test The program test is a collection of different tests that have been done to check the code. It
also has been used to generate most of the examples in this report. Any test routine is implemented
as a function and the main program calls the a function depending on the first parameter passed
to test. A simple call ./test will display the different options available.

convert, mask, rigidreg and nonrigidreg are the main programs and have been introduced
in the previous chapters. By typing the programs name a list of options is displayed. The options
are also explained in the respective section in Appendix A. mask is a simple program that takes one
data set as argument. It allows to mask the data sets by thresholding the T2W image interactively.

main can be used as soon as the data has been processed with convert. It allows different
filterings of the data and to display the data sets as described in section 4.3.

9.2 Data Representation

Volumes are represented as arrays of tensors, eigensystems or floating point numbers. The arrays
are always indexed so that the x-dimension is the ”fastest” growing number. A position i, j, k in
a volume is therefore the position ¢ + j - X + k- X - Y in the respective array, where X is the
x-dimension and Y is the y-dimension. The classes eigenfield.h and tensorfield.h provide
functions to access the positions i, j, k by specifying all three values or directly by providing the
position with one valuec=i+j5- X +k-X Y.
Any private member begins with an underscore _. For example the tensor-structure is a 3 x 3
matrix and stored as a floating point precision array
float _t[9];
where the indexing is
0] #[1] 2]
t[3] -t[4] -t[5]
t[6] t[7] -t[8]
The eigensystems are represented as 3 floating point numbers and 3 arrays of length 3 repre-

senting the respective eigenvectors:
float _lambdal, _lambda2, _lambda3;
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VTK ClLapack Xerces-C
- Libraries
tensor.h eigen.h andi.h*
basefield.h kfunctions.h*
tensorfield.h background.h eigenfield.h rsfunctions.h**

L

display.h tensorfunctions.h
________________________ Functions and classes
Applications
convert mask rigidreg nonrigidreg main
test

Figure 9.1: C++ Class hierarchy
* andi.h was written by J.Rexilius, kfunctions.h by S.Warfield
*x includes some functions written by S.Warfield

float _vector1[3], _vector2[3], _vector3[3];
The eigensystems are sorted by the size of the eigenvector, i.e. _lambdal always represents the
largest eigenvalue.

To store and process the data of the tensor- or eigenfield floating point precision numbers have
been chosen. This seems to be the best trade-off between memory usage and precision. Problems
only arose when computing the single value decomposition to generate the local rotation of the
tensors in the nonrigid registration. Often, the resulting tensor was no more symmetrical so that
double precision when performing the local warping is necessary.

The background images are all represented in unsigned short precision.

No additional information is stored in the data files, i.e. no header or leading bytes are present in
the files. All additional information has been placed in the xml-header file, which will be described
next.

Functions that take a pointer to an array of any type as parameter never check if the provided
array is long enough to perform the requested operations. Boundary checks are only performed
when working on the private member of a class, since the class member function knows the size of
its own data field.

9.3 XML Header

To store information related to the data the xml-standard® has been used. This allows to collect all
the information in a single, human readable file. The interaction with C++ has been done using

Lhttp:/ /www.w3.org/XML/
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Xerces-C [19]. As this information is the same for all classes (background, tensor- and eigenfields)
only one file needs to be stored. basefield.h provides the functions to read and write the xml-file
in a convenient manner. Most important when adding information to the header the following
steps have to be performed:

1. Change the Document Type Definition (DTD)

2. Add the new data to the protected members in basefield.h.

3. Add the member in the constructor and destructor.

4. Edit the read and write functions.

5. Implement a function that allows to get and set the new member.

When changing the DTD the new elements should be marked as optional, i.e. with either 7 or *
indicating that a xml-file without this element is still a valid instance of this DTD. Otherwise all
current applications will produce an error as they validate the provided xml-file with the DTD.

The functions that need to be edited in step 4 are:
void readdata(DOM_Node& node);
void readmanualy();
which are private members of basefield.h, and
void write_XMLHeader (const char xmlPath[]);

Eventually the function

void assert_values();

which checks if all the values are present before the header is saved into a file, also needs to be
expanded.

Functions are provided to read a string, float number, and attribute values. Numbers and
strings are already read and written to the xml-file, so that with simple copy-paste it should be
possible to add new data.

The last step is optional, since a derived class has access to the protected members. Nevertheless
it is always useful to provide such a function for direct access in an application or test program.



Chapter 10

Conclusion

The primary contributions of this thesis are:

e A complete implementation of the whole process from preprocessing of the diffusion tensor
data to the nonrigid alignment of two different data sets has been implemented. The imple-
mentation also is a framework to process and store tensor data, so that further work can be
based on the developed classes.

e A comparison and assessment of different tensor reorientation strategies.

¢ Different approaches to extract points in grayscale and tensor data are discussed and imple-
mented.

e A new visualization method of tensor data is presented.

The new visualization method is very useful to inspect small volumes of tensor data. It is the
most precise way of displaying tensor data sets as all the information in the data is represented
in the ellipsoids. Displaying the tensors as a three dimensional structure is also probably the best
way to understand the properties of this data structure. Furthermore, it enables a developer to
prove visually the correctness of any algorithm implemented and to check if the results of any
transformation of the data has a meaningful interpretation.

Besides optimizing the code for performance, further investigation of general improvements and
extensions would be interesting. Some of these ideas will be presented in the next section.

10.1 Further Work

First of all, the nonrigid registration should be expanded to fully support three dimensional data.
Most functions are written to work with three dimensional data but they have not been tested.
The matching process itself (Section 7.2) is only implemented for two dimensional data so this
would be a starting point. Finally, an extension to three dimensions involves making sure that all
functions include the voxel-dimensions correctly.

Thus, the extension to three dimensions primarily means finding a method for testing the
correctness of all functions.

As it can be assumed that diffusion tensor data has no meaningful interpretation in regions of
gray matter, a first step in incorporating T2 weighted data would be to mask the tensor data with
the segmented white matter and use the border between gray and white matter, as a boundary
condition when matching diffusion tensor data.

As any displacement of tensor data can be performed in two separate steps, (displacement of
the single components and local transformation of the tensor), any displacement can be applied
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on tensor data. It would also be interesting to compare the results when using displacement fields
derived from other then tensor data. This should be easy if the tensor data is aligned with the
SPGR data. Any transformation, (rigid and nonrigid), applied on the SPGR data can also be
applied on the tensor data and the corresponding local transformation of the tensors performed
after the displacement of the single components.

In Section 7.3 regarding the interpolation of the data, it was mentioned that the variogram
models have to be empirically selected for any given alignment. A way to find the optimal var-
iogram model would be to select landmark points manually in a number of cases and match the
corresponding points. Then the resulting displacements can be statistically analyzed to find the
best variogram function for the interpolation of the displacement fields.

The visualization of the tensors as ellipsoids is only useful for small data volumes. As can
be seen in the example images in Appendix B, the information provided becomes too large for
an interpretation. The next step is to display the tensors as fibers, i.e. connect the tensors by
following the largest eigenvalue. Fiber-tracking is a large research area; the correct identification
of a path is certainly not trivial. VTK provides a class vtkHyperStreamline to connect tensors.
As the images with the tensor-ellipsoids suggest, it should be possible, at least in certain regions
with clear orientation of the tensors, to apply this VTK data structure to connect single tensors.
The connected tensors are then visualized as a tube, which would represent a fiber. A prototype
for such a function is included in the class display.h.
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Appendix A

Functions Documentation

A.1 tensor.h

Functions in this class mainly provide a way to simple use tensors and apply basic mathematical
operations on them. The data stored in a tensor is a floating point precision array: float _t[9]
where the indexing is

0] 1] -t[2]
3] 4] _t]5]
6] 7] _t[8]

The only private function is
void eigsort(const double *W, int *i) comnst;
which sorts the eigenvalues by size and is used in eig(...).

Three different constructors allow the generation of an empty tensor (all values are set to zero), a
symmetric tensor where the indexing corresponds to

t1 t4 5
t4 12 16
t5 t6 t3

and a full tensor with nine independent values.

tensor();

tensor(float t1, float t2, float t3, float t4, float t5, float t6);

tensor(float t1, float t2, float t3, float t4, float t5, float t6, float t7, float
t8, float t9);

Three corresponding functions are available to set the values after the initialization:

void setZero();

void set(float t1, float t2, float t3, float t4, float t5, float t6);

void set(float t1, float t2, float t3, float t4, float t5, float t6, float t7, float
t8, float t9);

float get(const int i, comst int j) const;

returns the value at position 4, j in the tensor where 0 < 4,7 < 2 and
bool isZero() const;

checks if the tensor is empty, i.e. all values are zero and returns true if so.

The basic mathematical operations can be performed between tensors and between tensors and
scalars. Dividing a scalar by a tensor is not a legal operation.
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tensor operator+ (const tensor &s, const tensor &t);
tensor operator+ (const tensor &t, const float x);
tensor operator+ (const float x, const tensor &t);

tensor operator- (const tensor &s, const tensor &t);
tensor operator- (const tensor &t, const float x);
tensor operator- (const float x, const tensor &t);

tensor operatorx (const tensor &s, const tensor &t);
tensor operatorx (const tensor &t, const float x);
tensor operatorx (const float x, const tensor &t);

tensor operator/ (const tensor &s, const tensor &t);
tensor operator/ (const tensor &t, const float x);

tensor operator- (const tensor &t);
The last functions changes the sign of a tensor.

To send a tensor to the standard output the operator
ostream &operator << (ostream &out, const tensor &t);
is used, which will print the tensor values like

Tensor values:

[5 20 25;
20 10 30;
25 30 15]
which allows easy copy-paste into matlab.
Basic mathematical operations are:
float det() const the determinant
float trace() const the trace (see invariant I in equation 4.6)
tensor inv(tensor &result) const the inverse of a 3 x 3 matrix
tensor trans(tensor &result) const the transpose of a 3 x 3 matrix

To compute the eigenvalue, -vector decomposition (see equation 4.5) the CLAPACK function
dsygv_(...) is called. The eigenvalues are returned so that they can be directly used to instan-
tiate an eigensystem. The last argument must be 1 if the eigenvalues and eigenvectors should be
sorted in descending order.

int eig( float &eigl, float &eig2, float &eig3, float *vectorl, float *vector2, float
*vector3, const int sort=0) const;

The single value decomposition also calls a CLAPACK function (see equation 7.30) whereas CLA-
PACK returns directly V7 instead of V.

int svd( float &rl, float &r2, float &r3, tensor &q, tensor &s);

The equivalence between equation 7.30 and the function call is:

A = vxv?
qi1 qi12 Q13 1 S11 S12 813
= 421 g22 Q23 T2 S21 S22 S23
g31 4g32 433 T3 831 832 833

so that the rotation matrix W = UV is gs.
The following measurements can be computed:
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float euclid() conmst euclidian magnitude Z?,jzo D;;
float Max() const maximal value in tensor
float Min() const minimum value in tensor

The boolean comparison between two tensors is based on the function

float measure()const {return euclid();};

so that <, >, > and < are defined. The comparisons == and ! = are based on every single
component of the tensor.

Use of the following functions should be avoided whenever possible since they use the expen-
sive eig(...) functions to compute the eigenvalue, -vector decomposition and only return one
value. It is probably better to create an eigensystem (instance of class eigen.h) and derive this
measurements from there.

float* eigvecl(float *vector) const; first eigenvector, corresponding to largest eigenvalue
float* eigvec2(float *vector) const; second eigenvector

float* eigvec3(float *vector) const; third eigenvector, corresponding to smallest eigenvalue
float eigvall() comst; first (largest) eigenvalue

float eigval2() const; second eigenvalue

float eigval3() const; third eigenvalue

float anisotropy() const; anisotropy, see equation 4.17

A.2 eigen.h

The data stored in a eigensystem are three floating point precision values and three floating point
precision arrays, which are all private members of eigen.h:

float _lambdal, _lambda2, _lambda3;

float _vector1[3], _vector2[3], _vector3[3];

The eigenvalues are sorted so that _lambdal is always the largest eigenvalue.

The constructors are:

eigen(const float eigl, const float eig2, const float eig3, const float *vecl,
a constructor which initializes all values
eigen(); a constructor which sets all values to zero.

To set values in an eigensystem there are several specialized functions:

void set(const float eigl, const float eig2, const float eig3, const float *vecl,
const float *vec2, const float *vec3); set all the values in an eigensystem.
void set(const float eigl, const float eig2, const float eig3);

set the eigenvalues.
void setVectors(const float *vecl, const float *vec2, const float *vec3);

set the eigenvectors.
void setVector2(const float x, const float y, const float z);

sets the second eigenvector to be é; = (z,y, 2
void resetVector3(); sets the third eigenvector to €3 = é; x €,
void setZero(); sets all the values to zero.

)T
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If the largest eigenvalue is zero then the whole eigensystem is zero. Therefore the last function
only needs to set _lambdal to zero.

The single values can be accessed with:

float valuel() const; largest eigenvalue

float value2() const; second eigenvalue

float value3() comnst; smallest eigenvalue

float vectorl(const int index) const; returns element ”index” (0|1]|2) of eigenvector 1
float vector2(const int index) const; returns element ”index” (0|1]2) of eigenvector 2
float vector3(const int index) const; returns element ”index” (0|1]2) of eigenvector 3
void print() const; sends the eigensystem to the standard output

The operators defined are:

bool isZero() const; check if eigensystem is zero (true if so)

bool operator==(const eigen &e) const; compares all elements of the eigensystem, no tolerance
bool operator!=(const eigen &e) const; do.

bool operator< (const eigen &e) const; less then, uses measurement specified in measure()
bool operator> (const eigen &e) comnst; do.

bool operator<=(const eigen &e) comnst; do.

bool operator>=(const eigen &e) comnst; do.

Functions are:

void scale(const float factor); scale eigensystem by ”factor”

void scale(const float x, const float y, const float z);
scale differently in each direction

void rotate(const float pitch, const float roll, const float yaw);
Rotate eigensystem, the angles pitch, roll, and yaw
have to be provided in degrees

float det() const; determinant of the tensor = [T>_, A;
float relation_Lambdal L.ambda2() const; absolute value of i—;
float relation_Lambdal Lambda3() comnst; absolute value of i—;

void eigen2tensor(tensor &t) const; converts an eigensystem into a tensor
int tensor2eigen(const tensor &t); converts a tensor in an eigensystem

negative return value is an error, 1 is success

measurement of how close diffusion tensor shape is to

float close_ line() const; a line (equation 4.13)
float close_plane() const; a plane (equation 4.14)
float close_sphere() const; a sphere (equation 4.15)
anisotropy measure describing deviation
float anisotropy() const; from the spherical case (equation 4.17)

Functions between two eigensystems:
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float cosinMaxEigen(const eigen &e) const;
angle between the vectors of the maximum eigenvalues

bool isSimilar(const eigen &e, const float tolerance, const int similarity) const;
compare 2 eigensystem, return 1 if identical, 0 else
bool hasSimilarShape(const eigen &e, const float tolerance) const

do.

bool hasSimilarSize(const eigen &e, const float tolerance) const;
do.

bool hasSimilarDirection(const eigen &e, const float tolerance) const;
do.

bool threshold(const float threshold=0.8) const;
return true if eigensystem above threshold

A.3 Dbasefield.h

Private members of the class basefield.h read the values either from the console or an xml-file:

float readfloat(DOMNode& node); read numerical values from node in xml file;
return -1 if no value present
read string from node in xml file;
return -1 if no value present
int readstring(DOM_Node& node, char* mystring);
read attribute as string from node in xml file;
return -1 if no value present
pre:mystring is the name of the attribute to get value
post: mystring is the value of the attribute;
int readattribute(DOMNode& node, char* mystring);

void readfile(DOM Node& node) ; read the location of the datafile from node in xml file (could be remc
void readdata(DOM Node& node) ; read the xml file and extract the data wanted;

void readmanualy(); read ALL values from console

void readmanualy(int& value); read value from console, exit if entered -1

void readmanualy(float& value); do.

void readmanualy(char* value); do.

void assert_values(); check if all values to write xml-header are present

if not, ask for values

Protected members that are only accessible to the derived classes are:

int dimx, _dimy, _dimz; the dimensions of the field

float _deltax, _deltay, _deltaz; the distance between voxels = voxel dimensions
char *_datafile; pointer to the data file

char *_orientation; orientation of the field: axial, coronal, saggital
char *_sourcefile; location of source to derive tensor file

char * originalfile; location of the original data

baby specific data:
int _gestationalAge; Gestational age of the baby in weeks
int _mrNumber; Patient ID number
int _studyNumber; Study number
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int _seriesNumber; Series number for the diffusion data
char * _date; Date of the scan

Any new element added to the DTD should be added here.

Public members, i.e. functions accessible by any program are:

do everything needed to call readdata, should not need
void read XMLHeader ( const char xmlFile[]);

any editing when changing DTD
void write XMLHeader(const char xmlFile[]);

write a xml-header file at location xmlFile

set values
void setNumbers(const int age, const int patient_id, const int studyNr,
void setDate(const char* date);
void setOrig(const char* orig);
void setOrientation(const char orientation);

set the voxel dimensions for field
void setDelta(const float deltax, const float deltay, const float deltaz);
get the voxel dimensions for field
void getDelta(float& deltax, float& deltay, float& deltaz);
get the volume dimensions for field
void getDimension(int& dimx, int& dimy, int& dimz);

char * getPath(char * path); get the path to the data without any extension

The actual path to the data is generated in the derived class by appending the corresponding
extension.

No function to set the volume dimensions is provided, since this is either already defined by the
data set and therefore in the xml-header or a new data set is created and then the corresponding
derived class has to set this values.

Finally three generic functions are included in this class:

check boundaries for offset and window-size
and reset them if necessary.
used for display purposes:
Plane rotates the window depending on window-size
plane[3] = 2: Image is in xy-plane
= 1: Image is in xz-plane
= 0: Image is in yz-plane
in each case plane[0] and plane[1]
are the xy dimensions in the image coordinate system
plane[2] the number of images
void check boundaries(int offset[3], int windowsize[3], int plane[4]=NULL) const;

short * read pic(short *image,char path file[], int offset=0);
unsigned short * read pic(unsigned short *image, char path file[], int offset=0);

The last two functions read the content of the *.pic files generated by LSDI_recon.
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A.4 convert

The program convert is used by typing:

./convert -i=infile -o=outfile [options]

where infile and outfile are the full path and filename to the data. No file extensions are needed
and the conventions described in section 5.2 are used: tensor data has the extension .ten, eigen
data .eig and the background .bg. In case the type of the infile is raw” then the infile is the path
and the name of the files from which to derive the tensors, but without the ending XXX.pic. As
output the data as well as an xml-Header is written, as long as an eigensystem is involved in the
output. Table A.1 explains the options for convert.

Call Default Description

-all -it=raw convert from raw to tensor AND eigen

-it=(raw|tensor|eigen) | raw type of infile

-ot=(tensor—eigen) tensor type of outfile

-ix= 256 x-dimension of infile

-iy= 256 y-dimension of infile

-iz= 1 z-dimension of infile

-0X= same as input | x-dimension of outfile

-0X= same as input | y-dimension of outfile

-0z= same as input | z-dimension of outfile

-dx= 1 x-voxel dimension

-dy= 1 y-voxel dimension

-dz= 1 z-voxel dimension

-offx= 0 x-offset for outfile

-offy= 0 y-offset for outfile

-offz= 0 z-offset for outfile

-id= 0 Patient ID

-ex= 0 Examen number

-ser= 0 Series number

-ag= 0 Age

-or=(s|c|a) a Orientation: saggital, coronal or axial

-orig= notAvailable | location of the original data

-date= actual date (default is empty)

-r= -1 remove strips, 0 outside the object
1 outside and inside the object

Table A.1: Parameters for the program convert

A.5 rigidreg

rigidreg is simple to use. It only takes three arguments:

./rigidreg moving-xml-file stationary-xml-file interpolation-method=(1]2)

the interpolation method can be either linear (1) or nearest neighbor (2) as described in Section
6.2.

A.6 nonrigidreg

The program nonrigidreg is used by typing:
./nonrigidreg imagetype [options] [processing-options]
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where imagetype is a value vetween 0 and 4, which selects the type of input and output and is

described in table A.2. All the options with their default values are shown in table A.3

=W N = O

synthetic image, synthetic displacement; no input needed
MRI input image, synthetic displacement

MRI input and output image

xml input representing tensordata, synthetic displacement
xml input and output representing tensordata

Table A.2: Image type for nonrigid registration
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Call Default Type Description
-i= movingfile char array MRI or xml-file
-s= stationaryfile | char array MRI or xml-file
-0= outputfile char array path where to save output, will be same of same type as input
-syn= none char array path to synthethic displacement fields saved as floats
-X= 256 integer x-dimension for MRI file
-y= 256 integer y-dimension for MRI file
-7= 1 integer z-dimension for MRI file
-mw= 7 inpair integer | size of moving window=window measuring correlation
-sw= 7 inpair integer | size of stationary window=window where match is searched
1 = least square error (equation 7.18
= 0 Oorl { 0 = max. crosscorrelat(ion (equation ?7.17) }
matching method
0 =none
-mm= 0 0,1,2 1 =linear » weighting of matching window
2 =gauss
-sc= 1 integer number of scales to match
-scf= 2 integer scale factor for multiscale matching (only if sc>1)
-sl= 0 integer gauss-filterlength before downsampling
-n= 3 inpair integer | neighborhood where expectance of derivatives is computed
-st= 0.01 float threshold for ¢ in the point-detection
-pt= 0.0005 float threshold for extracted points
( 0= (trace+;:f;;(z)(trace()) (equa‘tion 713)
1= tf;zg)() (equation 7.12)
-pm= 0 0,1,2,3,4 y 2= trace() (equation 7.14)
3 = 2+local maximum in a 5 neigborhood
| 4 = 2+local maximum in a 9 neighborhood
point extracting method
k= 9 integer number of neighbors for kriging interpolation
(0 =Linear
1 =Spherical
-km= 0 0,1,2,3,4 { 2 =Exponential 3 method for variogram in kriging
3 =Cubic
| 4 =Gaussian
e 0 0.1 { 0 =no } anisotropic diffusion
’ 1 =yes [ before pointextraction
-astep= 2 integer time step for anisotropic diffusion
-aiter= 10 integer number of iterations in anisotropic diffusion
-acon= 0.5 float contrast value for anisotropic diffusion
-anoise= | 0.8 float noise value for anisotropic diffusion
-g= 1 3,5,7 Gauss-filterlength (after anisotropic diffusion,
before pointextraction)
-d= 10 integer for maximum displacement in synthetic random displacement
= 10 integer >=d ratio of pixels in sparse synthetic random displacement
-grid= 32 integer size of synthetic grid
-border= | 64 integer size of border in synthetic grid
-ran= 123456 integer to initialize random numbers
-1= 1 integer loop for applying matching several times
0 =only rotation (equation 7.30)
-tw= 1 0,1,2 1 =warping without scaling (equation 7.29)

2 =full warping (equation 7.28)
local tensor warping

Table A.3: Parameters for the nonrigid registration program
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A.7 Document Type Definition

<!ELEMENT
<!'ATTLIST

spl_tensor (header, data)>
spl_tensor version CDATA #REQUIRED> <!-- the version of this DTD -->

<!-- Header Section —->

<!ELEMENT
file)>

<!ELEMENT
<!ELEMENT
<!ELEMENT
<!ELEMENT
<!'ATTLIST

<!ELEMENT
<!ATTLIST
<!ATTLIST
<!ATTLIST
<!'ATTLIST

<!ELEMENT
<!'ATTLIST
<!'ATTLIST
<!'ATTLIST
<!'ATTLIST

<!ELEMENT
<!'ATTLIST
<!'ATTLIST
<!'ATTLIST
<!'ATTLIST

<!-- Data

<!ELEMENT

<!ELEMENT

<!ELEMENT
<!ELEMENT
<!ELEMENT

<!ELEMENT
<!ELEMENT
<!ELEMENT
<!ELEMENT
<!ELEMENT
<!ELEMENT

header (mrNumber?, studyNumber?, seriesNumber?, age?, original?, source
’ 3 3 ’ b ’

mrNumber (#PCDATA)> <!-- MR number -->

studyNumber (#PCDATA)> <!-- study number -->

seriesNumber (#PCDATA)> <!-- series number —-->

age (#PCDATA)>

age type (normal | gestational) "normal"> <!-- babies: gestational age -->

original (#PCDATA)> <!-- path where the data was graped from -->
original date CDATA #IMPLIED> <!-- when the data was graped -->
original datatype (short | float | double) "short">

original byteorder (LSB | MSB) "MSB" >

original orientation (axial | coronal | saggital) "axial">

source (#PCDATA)> <!-- path where the data was loaded -->
source date CDATA #IMPLIED> <!-- when the data was loaded ——>
source datatype (short | float | double) "short">

source byteorder (LSB | MSB) "MSB" >

source orientation (axial | coromnal | saggital) "axial'">

file (#PCDATA)> <!-- path where the actual file resides, no extensions -->
file date CDATA #IMPLIED> <!-- when the file was first created -->

file datatype (short | float | double) "float">

file byteorder (LSB | MSB) "MSB" >

file orientation (axial | coronal | saggital) "axial'">

Section —-—>
data (dimensions, description?)>
description (#PCDATA)>

dimensions (volumesize, voxelsize)>
volumesize (dim_x, dim_y, dim_z)>
voxelsize (delta x, delta.y, delta=z)>

dim_x (#PCDATA)>
dim.y (#PCDATA)>
dim_z (#PCDATA)>
delta_x (#PCDATA)>
delta.y (#PCDATA)>
delta_z (#PCDATA)>
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Example xml-Header

<7?xml version="1.0" encoding="iso-8859-1"7>
<!DOCTYPE spl_tensor SYSTEM "/home/rsierra/c++/tensor/data/spl_tensor.dtd">

<spl_tensor version="1.0">
<header>
<original date="11.2000" orientation="axial">/d/stockholm/data/diffusion
/highresdata/axial</original>
<source date="11.2000" orientation="axial">/projects/shortterm/warfield
/rsierra/examples/multislice/westin/axial/tensor/axial-S</source>
<file date="29.12.2000" orientation="axial">/projects/shortterm/warfield
/rsierra/examples/mydata/westin</file>
</header>
<data>
<dimensions>
<volumesize>
<dim x>256</dim x>
<dim_y>256</dimy>
<dim z>24</dim z>
</volumesize>
<voxelsize>
<deltax>0.859375</delta x>
<delta_y>0.859375</delta y>
<delta z>2.500000</delta z>
</voxelsize>
</dimensions>
</data>
</spl_tensor>
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Example Images

(a) (b)
(c) (d)

Figure B.1: Local transformations of tensors after synthetic displacement. (a) Original image;
(b) Full local transformation, Equation 7.28; (c) Local transformation without scaling, Equation
7.29; (d) Only local rotation, Equation 7.30.

64
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Figure B.2: Diffusion tensor image of an adult human brain. The tensors are color encoded as
described in section 4.3 on page 15. The image shows a field of 80 x 40 x 1 tensors.
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Figure B.3: Diffusion tensor image of the corpus callosum of an adult human brain. The tensors
are color encoded as described in section 4.3 on page 15. The image shows a field of 40 x 40 x 1

tensors.
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Figure B.4: Three dimensional representation of the frontal lobe of the corpus callosum in an adult
human brain. Field of view is 40 x 40 x 4, smoothed with a Gauss filter of length 3
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Figure B.5: Three dimensional representation of the frontal lobe of the corpus callosum in an adult
human brain. Field of view is 40 x 40 x 4, smoothed with a Gauss filter of length 3



